E.1 标准化降水蒸散指数原理
标准化降水蒸散指数(SPEI)是由 Vicente-Serrano 于 2010 年提出的,目的是通过考虑降水和蒸散两个因素来量化干旱情况。干旱不仅与降水量有关,还与蒸散(即水分蒸发和植物蒸腾的综合作用)密切相关。SPEI指数通过计算降水和蒸散量的差值,并使用标准化处理,最终通过正态标准化的累积频率分布来划分干旱等级。
E.2 标准化降水蒸散指数计算步骤
SPEI指数的计算步骤如下:
-
计算潜在蒸散(PET):
- Vicente-Serrano 推荐使用 Thornthwaite 方法 来计算潜在蒸散(PET)。该方法的优点是能够考虑温度变化,较好地反映地表的潜在蒸散。
-
计算逐月降水量与潜在蒸散量的差值:
- 使用公式 (E.1) 计算每月的降水量与潜在蒸散量的差值 DiD_i:
其中:
- DiD_i 是降水量与潜在蒸散量的差值。
- PiP_i 是第 ii 月的降水量。
- PETiPET_i 是第 ii 月的潜在蒸散量。
-
正态化处理:
- 使用类似于 SPI(标准化降水指数)的方法对 DiD_i 序列进行正态化处理,计算每个数据点对应的 SPEI 指数。由于 DiD_i 可能包含负值,因此 SPEI 指数采用了 3 个参数的 log-logistic 概率分布。该分布的累积分布函数为:
其中,参数 α、β 和 γ通过线性矩拟合得到,计算方法如下:
α=(W0−2W1)βΓ(1+1/β)Γ(1−1/β)(E.3)\alpha = \frac{(W_0 - 2W_1)\beta}{\Gamma(1 + 1/\beta) \Gamma(1 - 1/\beta)} \quad (E.3) β=2W1−W06W1−W0−6W2(E.4)\beta = \frac{2W_1 - W_0}{6W_1 - W_0 - 6W_2} \quad (E.4) γ=W0−αΓ(1+1/β)Γ(1−1/β)(E.5)\gamma = W_0 - \alpha \Gamma(1 + 1/\beta) \Gamma(1 - 1/\beta) \quad (E.5)其中:
- Γ\Gamma 为 Gamma 函数。
- W0,W1,W2W_0, W_1, W_2 是原始数据序列 DiD_i 的概率加权矩,计算方法如下:
其中,NN 是参与计算的月份数。
-
标准化处理:
-
对累计概率密度进行标准化,计算公式如下:
-
当累计概率 P≤0.5P \leq 0.5 时:
其中,常数值为:
-
c0=2.515517c_0 = 2.515517
-
c1=0.802853c_1 = 0.802853
-
c2=0.010328c_2 = 0.010328
-
d1=1.432788d_1 = 1.432788
-
d2=0.189269d_2 = 0.189269
-
d3=0.001308d_3 = 0.001308
-
当累计概率 P>0.5P > 0.5 时:
-
这个过程详细描述了如何通过降水与蒸散差值、概率分布模型、正态化处理等步骤,最终计算得到标准化的降水蒸散指数(SPEI)。
标准化降水蒸散指数(SPEI)的原理、过程与物理含义
标准化降水蒸散指数(SPEI)是一个用来评估和量化干旱情况的指数,考虑了降水量和潜在蒸散(PET)两个因素。干旱不仅是由于降水量的减少,也与蒸散作用密切相关,蒸散是植物和地表水体失去水分的过程,受温度、湿度、风速等多种因素影响。SPEI指数综合了降水与蒸散的相互作用,提供了一个能够量化干旱的工具,特别适用于水资源管理和气候研究。
1. 干旱的多维特性
干旱是一个多维的现象,它不仅受降水量的直接影响,还受到蒸散作用(包括植物蒸腾和地表蒸发)的影响。干旱发生时,通常伴随着降水的缺乏和蒸散作用的增强,因此,单纯考虑降水量不足以全面反映干旱的状况。
- 降水:直接影响地表水的供给,降水量的减少或分布不均可能导致干旱的发生。
- 蒸散:在干旱环境中,蒸散作用会增加,水分的损失加剧,这对水资源的可用性有重要影响。蒸散的强弱通常与温度、湿度等因素密切相关。
2. SPEI的概念
标准化降水蒸散指数(SPEI)是由西班牙学者 Vicente-Serrano 等人于2010年提出的一种评估干旱的指标。它结合了降水量和蒸散(潜在蒸散PET)的差值,并通过统计方法将该差值标准化,以反映一个地区的干旱程度。SPEI的计算不仅考虑了降水量,还反映了潜在蒸散的影响,因此可以更全面地描述气候变化对水资源的影响。
- 物理含义:SPEI的值表示了降水与潜在蒸散之间的差异,并且通过标准化后可以比较不同地区、不同时间尺度上的干旱程度。
- 正值与负值:
- 正值:代表降水量相对于蒸散量过剩,通常意味着一个地区水分充足。
- 负值:代表降水量相对于蒸散量不足,通常意味着一个地区存在干旱。
3. SPEI的计算步骤
SPEI的计算包含几个关键步骤,下面我们详细说明每一步的物理背景和计算过程。
第一步:计算潜在蒸散(PET)
潜在蒸散(PET)是指在没有水分限制的情况下,单位面积上的蒸发或蒸腾量。它是评估干旱的一个重要指标。由于蒸散与气温关系密切,因此PET通常由气温来估算。Vicente-Serrano推荐使用 Thornthwaite 方法 来计算PET,该方法通过温度数据来推算潜在蒸散量。
Thornthwaite方法:
- 该方法假设温度是蒸散量的主要驱动因素,并且与温度的三次方根成正比。
- 公式如下:
PET=16(10TI)aPET = 16 \left( \frac{10T}{I} \right)^{a}
其中 TT 是平均气温,II 是每月的热量因子,aa 是温度的指数,通常为 1.5141.514。
第二步:计算逐月降水量与潜在蒸散量的差值
在得到了潜在蒸散量(PET)后,我们可以通过计算每月的降水量与潜在蒸散量的差值,得到干旱的初步指标 DiD_i。这个差值反映了一个地区水分的盈亏情况。
- 物理含义:
- 当 Di>0D_i > 0 时,意味着降水量大于潜在蒸散量,水分充足。
- 当 Di<0D_i < 0 时,意味着降水量不足以满足蒸散需求,可能出现干旱。
公式为:
Di=Pi−PETiD_i = P_i - PET_i
其中,PiP_i 为月降水量,PETiPET_i 为月潜在蒸散量。
第三步:对差值序列进行正态化处理
由于 DiD_i 可能包含负值,直接使用这些差值不利于进一步的分析,因此需要对数据进行正态化处理。正态化处理的目标是将数据转化为标准正态分布形式,使得不同地区和不同时间尺度的数据可以进行比较。
log-logistic概率分布: SPEI指数采用了三参数的 log-logistic概率分布 来描述 DiD_i 数据的分布特性。log-logistic分布是一个适用于处理含有负值和较强偏态的数据分布模型。其累积分布函数(CDF)为:
F(x)=[1+(αx−γ)β]−1F(x) = \left[ 1 + \left( \frac{\alpha}{x - \gamma} \right)^\beta \right]^{-1}
其中,α\alpha、β\beta 和 γ\gamma 是通过线性矩拟合获得的参数。
通过拟合得到的分布可以为每一个 DiD_i 计算累积概率 F(x)F(x),并进一步计算对应的标准化值。
第四步:计算标准化SPEI值
通过log-logistic分布得到累计概率 F(x)F(x) 后,利用反向正态化公式将概率转化为标准正态分布值,得到最终的SPEI值。SPEI的标准化处理过程分为两种情况:
-
当累计概率 P≤0.5P \leq 0.5 时,计算标准化值 ww:
w=−2ln(P)w = \sqrt{-2 \ln(P)}进而得到 SPEI 的值:
SPEI=w−c0+c1w+c2w21+d1w+d2w2+d3w3SPEI = w - \frac{c_0 + c_1 w + c_2 w^2}{1 + d_1 w + d_2 w^2 + d_3 w^3} -
当累计概率 P>0.5P > 0.5 时,SPEI 为:
SPEI=−(w−c0+c1w+c2w21+d1w+d2w2+d3w3)SPEI = -\left( w - \frac{c_0 + c_1 w + c_2 w^2}{1 + d_1 w + d_2 w^2 + d_3 w^3} \right)
其中,常数 c0,c1,c2,d1,d2,d3c_0, c_1, c_2, d_1, d_2, d_3 为标准化过程中的拟合参数。
4. SPEI的物理意义
- 负值(干旱):SPEI为负值时,表示降水量不足以满足蒸散需求,水分亏缺,这通常意味着干旱的发生。
- 正值(湿润):SPEI为正值时,表示降水量超过了蒸散需求,水分充足,甚至可能有水分盈余,表示该地区的湿润状况。
通过对不同时间尺度(如月、季、年)上的SPEI进行计算,可以监测长期或短期的干旱变化,进而为水资源管理、农业生产、生态保护等领域提供决策支持。
5. SPEI的应用
- 干旱监测:SPEI可以用于实时监测干旱情况,尤其是对于农业、生态和水资源的影响分析。
- 气候变化研究:通过计算历史SPEI,可以评估气候变化对干旱频率和强度的影响。
- 水资源管理:SPEI可以帮助水资源管理部门在干旱发生时做出及时的决策,调整水资源分配策略。
总结来说,SPEI是一个综合考虑降水和蒸散的干旱指数,通过计算二者的差值并进行正态化处理,使得不同地区、不同时间尺度的干旱程度可以被量化和比较,进而为干旱监测和管理提供有力的工具。
这句话的表述是基本正确的,但可以稍微优化一下语言,使其更加清晰严谨。以下是改进后的版本:
SPEI 指数能够表征不同时间尺度下的干旱情况。当时间尺度为 k 个月时,某月的水分盈亏量等于该月与前 k−1 个月水分盈亏量的累积之和。
这样表述能够更明确地传达时间尺度 kk 的含义,同时避免歧义。如果你需要进一步解释时间尺度的具体影响,也可以补充说明,例如:
时间尺度 kk 的选择反映了短期或长期干旱的特征。例如,较小的 kk (如 1 或 3 个月)用于监测短期干旱,而较大的 kk (如 12 个月或更长)用于识别长期干旱趋势。
这种补充可以让读者对时间尺度的意义有更深的理解。如果现有句子已经满足论文需要,也完全可以直接使用! 😊