2.1 塔里木河流域概况
塔里木河流域位于新疆维吾尔自治区南部天山山脉和昆仑山、帕米尔之间,流域包括塔里木盆地周围向心聚流的九大水系及众多小河,位于东经73°10′~94°05′,北纬34°55′~43°08′,是我国最大的内陆河流域。塔里木河流域的一部分位于吉尔吉斯斯坦共和国东、南部及塔吉克斯坦共和国南部地区,流域总面积为102.0×104 km2,其中位于我国境内的流域面积为99.6×104 km2,境外流域面积为2.4×104 km2。
历史上开都河-孔雀河、迪那河、渭干河、阿克苏河、喀什噶尔河、叶尔羌河、和田河、克里雅河、车尔臣河九大水系都与塔里木河干流相通。随着气候变化和上游人类活动的影响,喀什噶尔河、克里雅河、车尔臣河等都相继无水进入塔里木河。20世纪初,车尔臣河、克里雅河、迪那河已断流。20世纪40年代以后,喀什噶尔河和渭干河已与塔里木河失去地表水联系。现今与塔里木河有地表水自然联系的只有阿克苏河、和田河、叶尔羌河和开都河-孔雀河四条源流。四条源流多年平均地表水径流量为224.9×108 m3,占塔里木河流域地表总径流量398.0×108 m3的56.5%。叶尔羌河自1964年后大部分水量引入小海子水库和永安坝水库,在1986年至2002年的17年中,仅有1994年、1999年和2000年有少量水汇入塔里木河,其余14年因断流而无水输入塔里木河,该河实际已基本断流;开都河-孔雀河在1952年因在轮台县塔里木河汊河拉因河口修建塔里木大坝,与塔里木河分离,自1980年起孔雀河通过库塔干渠向塔里木河下游灌区输水,而实际进入塔里木河的水量仅约1.0×108 m3;和田河是塔里木河第二大水量补给源流,又是一条季节性河流,每年只有在7—9月有水量汇入塔里木河,年内其余时间断流;阿克苏河是塔里木河流域四条源流中最大的源流和补给塔里木河最大的河流,入塔里木河水量占四条源流入塔里木河总水量的70%,是唯一常年向塔里木河输水的河流,对塔里木河的形成、发展和演变起着决定作用。塔里木河是典型的干旱区内陆河,自身不产流,属于干旱区平原型无支流汇入的自然耗散型内陆河。水资源主要依靠四条源流补给,阿克苏河(流域面积6.28×104 km2)、和田河(流域面积6.01×104 km2)和叶尔羌河(流域面积11.01×104 km2)三条主要支流的来水量分别占74.44%、20.33%和0.51%,另外4.70%来自孔雀河库塔干渠入流量。
塔里木河源流上游的天山、昆仑山、帕米尔高原终年积雪,冰川发育,河流供水以冰雪融水为主,有时局部暴雨和短时高温融雪形成较大洪水,洪水过程变化较复杂。冰川作为“固体水库”起到调节作用,使塔里木河各源流年径流量的年际变化较小,多年平均年径流量(1957—2002年)在阿拉尔站为46.15×108 m3,实测最大值为69.59×108 m3,C v值为0.22。年内径流分配不均匀,形成春旱、夏洪、秋缺、冬枯。夏秋季为洪水期,洪水期含沙量在塔里木河上中段为2.5~4.0kg/m3,最大断面含沙量10kg/m3,新渠满站为2100×104 t,阿拉尔站年输沙量为2600×104 t。塔里木河河水矿化度亦高,枯水期达3~5g/L。夏秋洪水不仅使河流水量急剧增加,同时也挟带了大量的泥沙,使河道迅速淤积,造成河流漫溢而发生灾害。
2.2 年径流量序列复杂性特征
水文系统是一个复杂的巨系统,其复杂性是天文圈、大气圈、生物圈、人类圈和岩石圈共同作用的结果。水文系统的复杂性反映在表征水文变化的各水文要素的变化中,这使得对水文系统的复杂性的研究可以通过对水文过程的研究来得到。近十年来,水文过程复杂性研究已由定性分析转向定量表征。具有代表意义的定量指标有:水文过程不均匀系数的分析与计算、水文过程分维值的分析与计算、水文过程复杂度分析与计算、水文过程Hurst系数估计等。
本章将小波分析和复杂性理论结合,具体内容有:基于小波分析的水文序列信息量系数计算;基于小波变换的水文序列分维计算;基于小波分析的水文序列Hurst系数计算;基于小波理论的水文序列多尺度分析。
2.2.1 小波函数与小波变换
小波函数ψ(t)指具有震荡性、能迅速衰减到零的一类函数,即
ψ(t)d t=0;若其Fourier变换ψ(ω)满足相容性条件:
其中
则称ψ(t)为基本小波或母小波函数。通过ψ(t)伸缩和平移后派生出一组函数:
其中,a,b∈R,a≠0,ψa,b(t)称为基于参数a、b的连续小波,a>0为尺度因子,反映小波的周期长度,在一定意义上1/a对应于频率ω。目前广泛使用的小波函数有Haar小波、墨西哥Mexican Hat(mexh)小波、Morlet(morl)小波、Daubechies(db N)小波等。
在实际应用时函数f(t)∈L 2R的一维连续小波变换定义如下:
在实际工作中,时间序列常常是离散的,如f(kΔt)(k=1,2,…,N);Δt为取样时间间隔,则序列小波变换为
小波变换在实际应用中是通过改变为a和b的大小来体现“变焦距”的功能,通常将连续小波变换中尺度和平移参数的离散化公式分别取作a=,b=
,这里j∈Z,a 0>0,b 0∈R,则离散小波变换为
采用动态采样网格,最常用的是二进制的动态采样网格a 0=2,b 0=1,每个网格点对应的尺度为2j,而平移为2jk,由此得到的小波为二进小波。二进小波对信号的分析具有变焦距的作用。假定一开始选择一个放大倍数2-j,它对应为观测到信号的某部分内容,当增加放大倍数即减少j值时,可以进一步观看信号更小的细节;反之,若想了解信号更粗的内容,则可以减小放大倍数,即加大j值。在这个意义上,小波变换被称为“数学显微镜”。
2.2.2 年径流序列信息量数
通过对水文序列进行小波分解,根据能量概率分布来表征水文序列变化特征的信息量系数。
对于给定的能量有限信号f(t),对其连续小波变换的尺度因子α与平移因子b做离散处理:a j=2j,b j,k=2jk,j,k∈Z。则f(t)在尺度a j(j=1,2,…,M;M为最大分解次数)下的离散小波变换系数d j,k。小波变换系数可采用快速小波变换算法Mallat计算。
利用小波变换系数d j,k可求得水文序列f(t)在各种尺度水平j下的能量E j:
则水文序列f(t)的总能量为
水文序列f(t)的各个尺度上的能量概率分布为P j
对于时间序列X={x 1,x 2,…,x n},由|x j|2/‖X‖2定义了序列X的能量概率分布,将能量分布的Shanon熵定义为信息量系数(Information Cost Function,ICF),即
信息量系数ICF计算出了与系统能量分布相应的信息,表征了被研究系统的复杂程度。水文序列越无规则,越复杂,其信息量系数越大;反之,能量分布集中于某一频带,时间序列有序性越强,复杂性越弱,其信息量系数越小。
采用塔里木河源流区年平均径流量(1957—2002年)序列作为分析的基本资料,小波函数采用Daubechies正交系中的Db4小波,最大分解次数为6,小波变换系数采用Mallat算法,不同分解次数下的能量概率分布及信息量系数计算结果表明(表2-1):塔里木河源流区ICF介于0.589~0.727:玉孜门洛克站年平均径流量的ICF值最大,其变化无规则性较强,复杂性也较强;其次是沙里桂兰克站、同古孜洛克站和协合拉站,而乌鲁瓦提站和卡群站的ICF值稍小,其复杂性也较小。
表2-1 年平均径流序列能量概率分布与信息量系数
2.2.3 年径流序列分维数
2.2.3.1 统计自相似性
20世纪70年代B.Mandelbrot基于整体与局部的自相似性提出的分形理论,可以描述复杂自然现象。所谓分形,是指在一定的标度尺度范围内,其相应的测度不随尺度的改变而变化,即整体中的每一个元素或局部都在一定程度上反映与体现着系统的特征与信息。大量研究表明,水文系统具有统计自相似性,即分形,这种自相似性为应用分形理论揭示复杂水文现象中的精细结构提供了基础,因此分形理论在水文学中得到了极大的重视。分形的特征量是分维数,分维数有多种定义,如容量维(D a)、信息维(D b)、关联维(D c)。分维值越大,系统越复杂,分维值越小,系统越简单。分形理论的关键在于分维的计算。对于分维的提取,已有很多方法,如Hausdorff维数法、计盒维数法、关联维数法、信息维数法等。由于各种方法着眼点不同,计算的分维值有较大差异,不稳定。
设随机水文过程X(t),对任意a>0,有
则X(t)具有统计自相似性。式(2-11)中,H称为自相似指数(或称Hurst系数),·=·表示依概率分布相等,a为尺度。通过自相似指数H可获得任意尺度a下的统计特征。
对于统计自相似性过程X(t),其谱密度函数S与角频率ω具有如下关系:
式中:a为频谱指数,且-1<a<3,当1≤a<3时,a=2H+1,则X(t)为分数布朗运动;当-1<a<1时,a=2H-1,则X(t)为分数高斯噪声,实际应用中,ω取正数才有意义。由于ω与尺度a互为倒数,则式(2-12)变为
2.2.3.2 年径流序列分维数
对水文序列X(t)进行连续小波变换可得到不同尺度a j下的连续小波变换系数W(a j,b),W(a j,b)在尺度a j下的能量谱为
对式(2-13)和式(2-14)联立求解,并在两边取对数得
式中:c 0为一常数,式(2-15)是关于log2S与log2a j的一元线性回归方程,直线的斜率即为频谱指数a。
由分形理论知,自相似性过程X(t)的分维数(盒子维数)D与频谱指数a的关系为