摘要
检索增强生成(RAG)是一种适用于检索敏感电子健康记录(EHR)的合适技术。它可以作为医疗副驾驶员Copilot的关键模块,帮助减少医疗从业者和患者的误诊。然而,现有基于启发式的医疗领域RAG模型的诊断准确性和特异性不足,特别是对于症状相似的疾病。本文提出MedRAG,一种通过知识图谱(KG)引导推理提升的医疗领域RAG模型,根据症状检索诊断和治疗建议。MedRAG系统地构建了一个全面的四层分级诊断知识图谱,涵盖各种疾病的关键诊断差异。这些差异与从EHR数据库检索到的相似EHR动态整合,并在大型语言模型中进行推理。这一过程使决策支持更加准确和具体,同时也主动提供后续问题以增强个性化医疗决策。MedRAG在公共数据集DDXPlus和从新加坡陈笃生医院收集的私人慢性疼痛诊断数据集(CPDD)上进行了评估,其性能与各种现有的RAG方法进行了比较。实验结果显示,利用知识图谱的信息整合和关系能力,我们的MedRAG提供了更具体的诊断洞察力,并在降低误诊率方面优于最先进的模型。我们的代码将在https://github.com/SNOWTEAM2023/MedRAG上可用。
核心速览
研究背景
-
研究问题:这篇文章要解决的问题是如何在医疗领域中使用检索增强生成(RAG)技术来提高诊断的准确性和特异性,特别是对于症状相似的疾病。
-
研究难点:该问题的研究难点包括:现有基于启发式的RAG模型在处理相似症状的疾病时表现不佳,难以提供精确的诊断和个性化的治疗建议。
-
相关工作:该问题的研究相关工作有:LLMs和RAG在医疗领域的应用,知识图谱增强LLMs和RAG的研究。现有的医疗RAG和LLMs通常依赖于启发式方法,导致输出不准确或模糊,特别是在疾病症状相似的情况下。
研究方法
这篇论文提出了MedRAG,一种通过知识图谱引导推理的RAG模型,用于解决医疗领域的诊断问题。具体来说,
-
诊断知识图谱构建:首先,系统地构建一个四层 hierarchical 诊断知识图谱,涵盖各种疾病的临界诊断差异。通过疾病聚类和层次聚合技术,从EHR数据库中提取潜在诊断和相应的症状。然后,使用大型语言模型(LLM)增强图谱,添加关键的诊断差异。
-
诊断差异知识图谱搜索:通过将患者症状分解为临床特征(如症状和位置),并在诊断知识图谱中进行多级匹配和向上遍历,识别与输入患者相关的关键诊断差异知识图谱。
-
KG引导推理RAG:最后,结合检索到的EHR和诊断差异知识图谱,在大语言模型中进行推理,生成精确的诊断、治疗建议和后续问题。该模块包括文档检索器和KG引导推理LLM引擎。
公式解释:
-
知识图谱构建过程中,疾病知识图谱D通过层次聚合生成:
-
诊断差异知识图谱搜索过程中,通过多级匹配和向上遍历,识别与患者症状最相关的疾病子类别:
-
RAG过程中,结合检索到的EHR和诊断差异知识图谱进行推理:
实验设计
-
数据集:使用两个数据集进行评估,一个是公共数据集DDXPlus,另一个是私人数据集CPDD。DDXPlus是一个大规模合成的EHR数据集,包含49种诊断和超过130万名患者。CPDD是一个专注于慢性疼痛患者的专用EHR数据集,包含551名患者和33种诊断。
-
基线模型:与六种其他SOTA RAG模型进行比较,包括Naive RAG+COT、FL-RAG、FS-RAG、FLARE、DRAGIN和SR-RAG。
-
评估指标:使用准确性、特异性和文本生成指标(如BERTScore、BLEU、ROUGE、METEOR)进行评估。此外,还进行了主观评估,由医生根据Mini-CEX标准对生成的报告进行评分。
结果与分析
-
定量比较:在CPDD和DDXPlus数据集上,MedRAG在多个指标上表现最佳或次优。在CPDD数据集上,MedRAG在L3指标上比第二好的模型高出11.32%。在DDXPlus数据集上,MedRAG在L3指标上比第二好的模型高出1.23%。
-
兼容性、泛化性和适应性:在不同的大型语言模型(如Mixtral-8x7B、Qwen-2.5、Llama-3.1-Instruct、GPT-3.5-turbo和GPT-4o)上,MedRAG显著提高了诊断准确性。特别是对于较小的模型,KG引导推理显著提升了性能。
-
主动诊断提问机制:通过目标导向的提问,MedRAG逐步收集了更多关键细节,显著提高了诊断准确性。当覆盖到100%的关键症状时,L3准确性从52.83%提高到66.04%。
-
消融研究:评估了不同组件的有效性,结果表明检索器和KG引导推理模块显著提高了性能。随机选择的文档比没有文档的情况表现更好,加入正确的KG增强知识后,噪声效应得到缓解,准确性在所有指标上都有提升。
总体结论
MedRAG通过整合KG引导推理与RAG模型,显著提高了医疗领域的诊断准确性和特异性。系统性地检索和推理EHR,动态地结合关键的诊断差异知识图谱,提供了更精确的诊断和个性化的治疗建议。此外,MedRAG的主动诊断提问机制证明其有效性,能够向医生和患者提供有针对性的问题,增强诊断性能和咨询效率。公共和私人数据集的评估表明,MedRAG在减少相似症状疾病的误诊率方面表现优异,展示了其在医疗助手中的潜力。未来工作包括整合多模态数据(如医学影像、生理信号数据和血液测试数据)以进一步提高诊断准确性,并将MedRAG部署到实际的医疗助手系统中。
论文评价
优点与创新
-
系统构建四层诊断知识图谱:MedRAG通过系统构建一个四层诊断知识图谱,涵盖各种疾病的关键诊断差异,显著提高了推理能力。
-
增强的RAG方法:提出了一种结合知识图谱推理的RAG方法,显著提高了RAG在做出准确和高度特定诊断决策方面的能力。
-
个性化治疗建议和药物指导:不仅支持个性化治疗建议,还能在必要时主动生成后续问题,进一步澄清模糊的患者信息。
-
跨LLM的鲁棒性:在各种LLM上展示了强大的泛化能力,并证明了其在生成基于推理的后续诊断问题方面的有效性。
-
公共和私有数据集的综合评估:在公共数据集DDXPlus和私有数据集CPDD上的综合实验表明,MedRAG在减少相似表现疾病的误诊率方面优于现有的RAG模型。
-
主动诊断提问机制:提出了一个优化的主动诊断提问机制,能够在初始输入缺乏关键信息时,提供有针对性的后续问题,增强诊断性能。
不足与反思
-
未来工作:计划通过整合多模态数据(如医学影像、生理信号数据和血液测试数据)来进一步提高诊断准确性,并将MedRAG部署到实际的医疗辅助系统中进行医院测试。
-
用户体验改进:为了提高医生的使用便利性,计划将语音识别模块集成到系统中,使其能够在咨询过程中被动地听取医生和患者的对话,并提供实时的后续问题和相关解释。
关键问题及回答
问题1:MedRAG在构建诊断知识图谱时,如何确保图谱的详细性和准确性?
MedRAG通过以下步骤确保诊断知识图谱的详细性和准确性:
-
疾病聚类:首先,使用疾病聚类技术将EHR数据库中的疾病统一表示,确保同一疾病的不同形式和表示被归为一类。
-
层次聚合:通过层次聚合技术,将疾病聚类结果进一步聚合为更广泛的类别和子类别,形成四层 hierarchical 诊断知识图谱。
-
大型语言模型增强:利用大型语言模型(LLM)的语义理解和主题提取能力,对图谱进行增强,添加关键的诊断差异信息。
-
临床特征匹配:通过将患者症状分解为临床特征(如症状和位置),并在诊断知识图谱中进行多级匹配和向上遍历,确保图谱中包含详细的疾病特征和诊断差异。
问题2:MedRAG的诊断差异知识图谱搜索模块是如何工作的?请详细描述其过程。
-
症状分解:将患者的症状描述分解为更详细的临床特征,如症状和位置。
-
特征匹配:计算每个特征与诊断知识图谱中节点(疾病或症状)的语义相似度,选择最相似的特征节点。
-
多级匹配和向上遍历:通过多级匹配和向上遍历,识别与患者症状最相关的疾病子类别。具体来说,计算每个特征节点到各疾病子类别的最短路径距离,并通过投票机制确定最相关的疾病子类别。
-
生成诊断差异知识图谱:将识别出的关键诊断差异知识图谱与患者症状进行关联,形成完整的诊断差异知识图谱,用于后续的推理过程。
问题3:MedRAG在不同大型语言模型上的表现如何?其兼容性和适应性如何?
MedRAG在不同大型语言模型(LLMs)上均表现出色,证明了其兼容性和适应性。具体表现如下:
-
兼容性:MedRAG能够在多种开源和闭源的大型语言模型(如Mixtral-8x7B、Qwen-2.5、Llama-3.1-Instruct、GPT-3.5-turbo和GPT-4o)上运行,并显著提高诊断准确性。
-
适应性:MedRAG在不同类型的LLMs上均表现出较高的诊断准确性,特别是在使用GPT-4o作为 backbone LLM 时,表现最为出色,显示出其强大的适应性和推理能力。
-
消融研究:通过消融研究评估了不同组件的有效性,结果表明,引入知识图谱引导推理显著提高了MedRAG在不同LLMs上的诊断准确性,特别是在小型模型中效果更为显著。
附录
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。