从 MedRAG 到 i-MedRAG|新型多轮搜索机制显著提高大模型医学能力

背景

近年来,大语言模型 (LLMs) 如 GPT 系列已展示出解决医学问答任务的巨大潜力。然而,单凭模型内部预训练的固有知识往往难以应对医学领域中高精度、高复杂度的问答任务。而传统的检索增强生成 (RAG) 虽能补充外部知识,却通常局限于单轮检索,无法有效处理需要多步推理与连续信息整合的问题。

为了解决这些挑战,我们在此前推出的MedRAG基础上,进一步提出一种全新的迭代检索增强生成框架 i-MedRAG,让大模型能够根据历史检索结果动态生成跟进查询 (follow-up queries),逐步获取关键信息,形成完整的逻辑推理链,从而显著提升复杂医学问答的性能。

MedRAG 回顾:突破大模型的知识瓶颈

MedRAG作为我们早期的研究成果,首次系统性地评估了RAG在医学问答中的表现。通过引入检索器 (如BM25、MedCPT) 与权威医学语料库 (如PubMed、StatPearls),MedRAG 有效提升了模型在多项医学问答基准上的性能,特别是在零样本 (zero-shot) 设定下为大模型补充了外部知识。

MedRAG 的亮点包括:

1. 外部知识补充:减少模型幻觉 (hallucination),提高答案准确性;
2. 稳定提升:在不同数据集任务上表现优异,特别是 PubMed语料库的广泛适配性;
3. 综合评估:针对不同检索器与语料组合的性能差异进行了详细探究。

i-MedRAG: 迭代检索实现复杂推理

尽管 MedRAG 已取得显著提升,但面对复杂的临床推理场景(如 USMLE 题目)时,传统 RAG 的单轮检索依旧存在两个问题:
1. 信息不完整:检索器只能基于初始查询返回信息,难以逐步定位复杂问题中的关键信息。
2. 检索效果受限:初始查询往往过于宽泛,导致无法找到精准答案。

为了解决这些挑战,我们提出 i-MedRAG,将跟进查询 (follow-up queries) 引入MedRAG 框架,让大模型能够:
1. 动态生成查询:根据历史检索结果生成后续问题,逐步定位关键信息;
2. 构建信息链条:通过多轮检索与推理,形成完整逻辑链,找到准确答案。

性能突破:新 SOTA 成绩

在美国医学执照考试 MedQA-USMLE 数据集上,i-MedRAG 在零样本 (zero-shot) 设定下,使用 GPT-3.5 实现了 69.68% 的准确率,不仅超过了前代 MedRAG (66.61%),还超越了现有的 few-shot 和 fine-tuned 方法,例如 MedAdapter 的 68.66% 和 LLM-AMT 的 67.90%。

此外,i-MedRAG 在多个模型和数据集上的表现证明了其广泛的适应性:GPT-3.5 与 Llama-3.1-8B 在 MedQA 和 MMLU-Med 上均实现性能提升。i-MedRAG 在需要分步信息检索的 MedQA-USMLE 任务中效果尤为显著。

案例解析:多轮查询精准定位答案

面对复杂的医学问答,传统 RAG 往往难以找到关键信息。我们通过一个药物机制问题,展示 i-MedRAG 如何通过迭代检索与推理,精准解决挑战。传统方法的 CoT 模型凭借固有知识猜测「自由基生成」,但未能准确定位药物。而 MedRAG 的单轮检索未找到明确的药物信息,无法给出结论。i-MedRAG 通过分步的检索和推理,先锁定药物顺铂,再进一步搜索得到其作用机制是通过与 DNA 发生交联,导致 DNA 链断裂,从而抑制癌细胞增殖。因此最终答案为 D。

可扩展性分析:探索迭代次数与查询数量的影响

我们进一步分析了 i-MedRAG 的可扩展性,重点探究了两个核心超参数对性能的影响:
1. 迭代次数 (Iterations): 模型生成多少轮跟进查询;
2. 每轮查询数量 (Queries per Iteration): 每轮生成的查询数量。

在复杂任务(MedQA-USMLE)上,随着迭代次数的增加,模型性能逐步提升,表现出显著的正相关关系。在较简单任务(MMLU-Med)上,模型性能在一至两轮查询后迅速收敛,过多迭代反而可能引入冗余信息。而查询数量的影响在于:每轮生成更多查询可以加速性能提升,但也导致收敛更快。同时,适量的查询设置能在提升效果与效率之间取得平衡。

总结:从 MedRAG 到 i-MedRAG

MedRAG 突破了大模型固有知识的瓶颈,而 i-MedRAG 进一步实现了复杂任务中的逐步信息获取,使大模型具备了「会问问题」的能力。在零样本设定下,我们通过 i-MedRAG 实现了新 SOTA 性能,为医学问答任务带来了新的解决方案。

如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值