有一点P和线段AB,已知点P的坐标和线段两个端点(A点和B点)的坐标。
- 求线段AP在线段AB上的投影长度;
- 求点P在线段AB上的投影点的坐标;
- 判断点P的投影点是否在线段AB内;
- 求∠PAB的角度值;
- 判断∠PAB是锐角、直角,还是钝角。
可以使用向量法求解以上问题。
对于向量
a
⃗
(
x
1
,
y
1
)
\vec{a}(x_1, y_1)
a(x1,y1),
b
⃗
(
x
2
,
y
2
)
\vec{b}(x_2, y_2)
b(x2,y2),
- 点乘的公式为: a ⃗ ⋅ b ⃗ = x 1 ⋅ y 1 + x 2 ⋅ y 2 \vec{a} · \vec{b} = x_1·y_1 + x_2·y_2 a⋅b=x1⋅y1+x2⋅y2,
- 点乘的几何意义为: a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ c o s θ \vec{a}·\vec{b}=|\vec{a}|·|\vec{b}|cos\theta a⋅b=∣a∣⋅∣b∣cosθ
若把cos放到等式左侧,这个运算也可以理解为:在点乘运算中,b向量投影到a向量上(或a向量投影到b向量上,两者相同),然后通过除以它们的标量长度来“标准化”。这个值一定是小于等于1的,可以转化为一个角度值。
- 即为计算向量b在向量a方向上的投影长度(有正负之分);
- 有了投影长度,除以向量a的标量长度,即得到点P的投影与线段AB的投影关系r;
若 r < 0:点P的投影点在点A方向上的延长线上;
若 r = 0:点P的投影点即为A点;
若 0 < r < 1:点P的投影点在线段AB内;
若 r = 1:点P的投影点即为B点;
若 r > 1: 点P的投影点在点B方向上的延长线上。 - 有了投影关系,再根据点A的坐标,即可求出点P投影点的坐标;
- ∠PAB即为两个向量之间的夹角;
- 判断∠PAB是锐角、直角,还是钝角,只需根据向量a和b的点乘结果来判断:
若 > 0:向量a和b的方向相同,∠PAB是锐角;
若 = 0:向量a和b正交,∠PAB是直角;
若 < 0:向量a和b的方向相反,∠PAB是钝角。
向量的叉乘,又叫向量积、叉积。
向量a和向量b的叉积是一个向量,而不是一个标量。向量a和向量b的叉积是一个法向量:
- 该向量垂直于向量a和b构成的平面,遵循右手定则。即将右手食指指向a的方向,中指指向b的方向,则此时拇指的方向即为法向量的方向。这一定则意味着叉积满足反交换律:a
x b = - b x a。 - 该向量的模长是向量a和b组成的平行四边形的面积。
根据向量叉乘的几何意义,则可以知道:
- 向量叉乘的结果的模长,即为这两个向量组成的平行四边形的面积;
- 如果叉乘的结果为0,则两个向量方向相同或相反,或它们任意一个的长度为0(而点乘的结果为0,则两个向量互相垂直);
- 判断点P在向量AB的左侧还是右侧,则可根据向量 ABxAP 的叉乘结果 r 来判断,根据右手定则:
若 r > 0,则点P在向量AB的左侧;
若 r = 0,则点P在向量AB上;
若 r < 0,则点P在向量AB的右侧。