点与线段的关系

有一点P和线段AB,已知点P的坐标和线段两个端点(A点和B点)的坐标。
在这里插入图片描述

  1. 求线段AP在线段AB上的投影长度;
  2. 求点P在线段AB上的投影点的坐标;
  3. 判断点P的投影点是否在线段AB内;
  4. 求∠PAB的角度值;
  5. 判断∠PAB是锐角、直角,还是钝角。

可以使用向量法求解以上问题。
在这里插入图片描述
对于向量 a ⃗ ( x 1 , y 1 ) \vec{a}(x_1, y_1) a (x1,y1) b ⃗ ( x 2 , y 2 ) \vec{b}(x_2, y_2) b (x2,y2)

  • 点乘的公式为: a ⃗ ⋅ b ⃗ = x 1 ⋅ y 1 + x 2 ⋅ y 2 \vec{a} · \vec{b} = x_1·y_1 + x_2·y_2 a b =x1y1+x2y2
  • 点乘的几何意义为: a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ c o s θ \vec{a}·\vec{b}=|\vec{a}|·|\vec{b}|cos\theta a b =a b cosθ

若把cos放到等式左侧,这个运算也可以理解为:在点乘运算中,b向量投影到a向量上(或a向量投影到b向量上,两者相同),然后通过除以它们的标量长度来“标准化”。这个值一定是小于等于1的,可以转化为一个角度值。

  1. 即为计算向量b在向量a方向上的投影长度(有正负之分);
  2. 有了投影长度,除以向量a的标量长度,即得到点P的投影与线段AB的投影关系r;
    若 r < 0:点P的投影点在点A方向上的延长线上;
    若 r = 0:点P的投影点即为A点;
    若 0 < r < 1:点P的投影点在线段AB内;
    若 r = 1:点P的投影点即为B点;
    若 r > 1: 点P的投影点在点B方向上的延长线上。
  3. 有了投影关系,再根据点A的坐标,即可求出点P投影点的坐标;
  4. ∠PAB即为两个向量之间的夹角;
  5. 判断∠PAB是锐角、直角,还是钝角,只需根据向量a和b的点乘结果来判断:
    若 > 0:向量a和b的方向相同,∠PAB是锐角;
    若 = 0:向量a和b正交,∠PAB是直角;
    若 < 0:向量a和b的方向相反,∠PAB是钝角。

在这里插入图片描述
向量的叉乘,又叫向量积、叉积。

向量a和向量b的叉积是一个向量,而不是一个标量。向量a和向量b的叉积是一个法向量:

  1. 该向量垂直于向量a和b构成的平面,遵循右手定则。即将右手食指指向a的方向,中指指向b的方向,则此时拇指的方向即为法向量的方向。这一定则意味着叉积满足反交换律:a
    x b = - b x a。
  2. 该向量的模长是向量a和b组成的平行四边形的面积。

在这里插入图片描述
根据向量叉乘的几何意义,则可以知道:

  1. 向量叉乘的结果的模长,即为这两个向量组成的平行四边形的面积;
  2. 如果叉乘的结果为0,则两个向量方向相同或相反,或它们任意一个的长度为0(而点乘的结果为0,则两个向量互相垂直);
  3. 判断点P在向量AB的左侧还是右侧,则可根据向量 ABxAP 的叉乘结果 r 来判断,根据右手定则:
    若 r > 0,则点P在向量AB的左侧;
    若 r = 0,则点P在向量AB上;
    若 r < 0,则点P在向量AB的右侧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值