空间转录组分析实战3:空间转录组去卷积—CARD细胞注释

本文介绍了如何利用2022年NatureBiotechnology杂志上的CARD软件对高通量测序的10XVisium空间转录组数据进行细胞类型去卷积,通过实际案例展示了从数据预处理到CARD分析及结果解读的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:当下基于高通量测序的10X Visium 空间转录组技术还达不到单细胞转录组的分辨率,所使用的 6.5 X 6.5mm的捕获区域包括5000个孔(spot),其每个spot的直径为55μm,远超单个细胞体积,导致测得的每个孔(spot)可能包含2-10个以上的细胞,这会导致特定位置的基因表达是同质或者异质细胞类型的混合状态。(10X Visium HD已与2024年初正式发布,可以实现空间单细胞分辨率,但离大规模使用还有一段时间)

因此,需要使用细胞类型去卷积(deconvolution)的分析工具去解析每个孔中的细胞类型组成,从而实现对细胞类型的空间定位。 现在此类分析工具出来很多,像SPOTlight、RCTD、CARD、Cell2location、STdeconvolve等。

本次实战3给大家介绍的是一款2022年发表在Nature Biotechnology杂志上的空转细胞类型去卷积软件——CARD

文章:Spatially informed cell type deconvolution for spatial transcriptomics

CARD分析步骤示意图

接实战2:

首先需要找到相同癌种的单细胞转录组数据,本次实战使用GEO单细胞数据,编号:GSE138794

下载该数据集下的GSM4119531— GSM4119535这5个单细胞转录组数据

①进行单细胞数据分析流程

##实战3:结合10X单细胞数据对空间转录组数据进行反卷积细胞注释
##加载R包
library(Seurat)
library(Matrix)
library(harmony)
library(hdf5r)
library(ggplot2)
library(data.table)
library(dplyr)

##GBM单细胞数据:GSM4119531,GSM4119532
setwd('E:/GSE138794/') #单细胞矩阵存放路径
dir = c("GSM4119531/","GSM4119532/","GSM4119533/","GSM4119534/","GSM4119535/")
names(dir) <- c('GSM4119531','GSM4119532','GSM4119533','GSM4119534','GSM4119535')


scRNAlist <- list()
#每个样本创建一个seurat对象,并存放到scRNAlist里
for(i in 1:length(dir)){
  counts <- Read10X(data.dir = dir[i],gene.column = 1)
  scRNAlist[[i]] <- Create
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值