空间转录组分析实战2:空间区域划分及差异分析

 本讲接实战1,本次实战分析主要对 GBM4 样本进行空间区域划分区域间差异分析

##实战2:空间区域划分及差异分析
##加载R包
library(Seurat)
library(hdf5r)
library(ggplot2)
library(data.table)
library(dplyr)


##载入实战1保存的Seurat对象
load('GBM4.rdata')

#可视化Cluster分布及H&E组织切片
p1<-SpatialPlot(GBM4, label = TRUE, label.size = 5)
p2<-SpatialPlot(GBM4,pt.size.factor = 0.6)+NoLegend()
p1+p2

左图:Cluster分布                                                          右图:H&E组织切片
在H&E染色下,癌细胞的细胞核显示出更加浓密和显著的染色,这是由于癌细胞的核质较大、细胞核形态不规则以及核分裂活跃等特点所致。这种深染色现象有助于在组织切片中更容易地识别和定位癌灶。
根据上图(右)H&E 情况,初步将Cluster0 和 6 定义为Normal, 将Cluster3,5定义为Transition, 其他的 Cluster 定义为Tumor。(实际分析中应结合CNV结果,此处仅做示例)
#区域定义
GBM4@meta.data$Region<-NA
GBM4@meta.data$Region[GBM4@meta.data$seurat_clusters %in% c('0','6')] <- "Normal"
GBM4@meta.data$Region[GBM4@meta.data$seurat_clusters %in% c('3','2','5')] <- "Transition"
GBM4@meta.data$Region[GBM4@meta.data$seurat_clusters %in% c('1','4')] <- "Tumor"

#可视化区域划分结果
SpatialPlot(GBM4, label = TRUE, label.size = 5,group.by = 'Region',cols = c('Normal'='#4b5cc4','Transition'='#FE8D3C','Tumor'='#AA0000'))

上面根据Cluser及H&E染色特征,大致将切片划分为:NormalTransitionTumor区域

接下来就可以对NormalTransitionTumor区域进行差异分析了

##区域间差异分析
#切换Idents为上面定义的Region
Idents(GBM4)<-GBM4$Region

#找到各区域的标记物,并只报道阳性位点
markers <- FindAllMarkers(GBM4, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)

#找到各区域top10基因
top10<-markers %>%
  group_by(cluster) %>%
  top_n(n = 10, wt = avg_log2FC)


#可视化top10基因热图
DoHeatmap(GBM4, features = top10$gene,group.colors = c('Normal'='#4b5cc4','Transition'='#FE8D3C','Tumor'='#AA0000')) + NoLegend()

 (Normal区域的TOP基因里有几个线粒体,因为未质控,QC是可选项,与单细胞不同

接下来对NormalTransitionTumor区域差异基因进行KEGG富集分析

library(clusterProfiler)

#将基因SYMBOL转换为ENTREZID
gid <- bitr(unique(markers$gene), 'SYMBOL', 'ENTREZID', OrgDb= 'org.Hs.eg.db')
markers <- full_join(markers, gid, by=c('gene' = 'SYMBOL'))

#KEGG通路富集分析
KEGG = compareCluster(ENTREZID ~ cluster, data = markers, fun='enrichKEGG')

#可视化各区域TOP5通路
dotplot(KEGG, label_format=40) + theme(axis.text.x = element_text(angle=45, hjust=1)) + scale_color_gradient(high="#4b5cc4",low="#FE8D3C")

#保存分析结果,以便下期使用
save(GBM4,file= 'GBM4.rdata')

 从KEGG富集结果来看,Normal区域、Tumor区域、Transition区域差异显著

Tumor区域的Cell cycleDNA replication显著富集,肿瘤区域细胞周期和DNA复制的显著富集可能反映了肿瘤细胞在增殖和基因组稳定性方面存在的异常,符合肿瘤的生物学特征;

Transition区域的Phagosome、Antigen processing and presentation通路富集,表明该区域在机体的免疫防御中起着重要作用;抗原处理和呈递是机体免疫系统中重要的过程,涉及到识别外源抗原或内源抗原,并将它们呈递给免疫系统中的T细胞和B细胞,从而激活免疫反应。

好了,以上就是本次实战2的内容,下期将结合10X单细胞数据对ST空间转录组数据进行反卷积细胞注释!!

  • 14
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
CCA(canonical correlation analysis)是一种常用的多变量统计分析方法,可以用于整合分析单细胞转录空间转录的数据。 单细胞转录是指对单个细胞的转录进行测量和分析,可以了解细胞间的异质性和功能特征。而空间转录是指在织或器官水平上,对转录进行测量和分析,可以了解细胞在空间上的分布和相互作用。 在整合分析单细胞转录空间转录时,首先需要对两种数据进行预处理,例如数据清洗、标准化和归一化等。然后,可以利用CCA方法来识别两种数据之间共享的信息和变化模式。 CCA通过最大化两个数据集之间的相关性,找到两者之间最大化的公共变量。具体步骤包括:首先,计算两个数据集之间的相关性矩阵;然后,利用Singular Value Decomposition(奇异值分解)将相关性矩阵分解成特征向量和特征值;最后,根据特征值的大小选择最相关的特征向量,得到两个数据集之间的相关性。 通过整合分析单细胞转录空间转录的数据,可以获得以下优势:一是可以揭示细胞类型和织结构之间的关系,帮助我们了解细胞的空间分布模式;二是可以发现特定细胞类型在不同织中的表达模式和功能特征;三是可以识别具有生物学意义的共同变化模式,为进一步研究和解读提供线索。 当然,整合分析单细胞转录空间转录的数据还需要结合其他的统计方法和生物学解释来进行综合分析和解读。这样的整合方法可以为我们更好地理解细胞和织的功能和相互作用提供重要的信息。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值