【信号与系统】(十七)傅里叶变换与频域分析——能量谱和功率谱

本文详细介绍了能量谱和功率谱的概念,包括信号能量、帕斯瓦尔方程、能量密度谱以及功率密度谱。能量谱是单位频率的信号能量,反映了信号在频域中的分布;功率谱则关注信号的平均功率。两者通过自相关函数存在傅里叶变换关系。内容适用于理解和分析工程信号与系统的特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

能量谱和功率谱

1 能量谱

1.1 信号能量

信号(电压或电流) f ( t ) f(t) f(t) 1 Ω 1Ω 1Ω电阻上的瞬时功率为 ∣ f ( t ) ∣ 2 |f(t)|^2 f(t)2,在区间 ( − T , T ) (-T, T) (T,T)的能量为
在这里插入图片描述
定义:时间 ( − ∞ , ∞ ) (-∞, ∞) (,)区间上信号的能量。
在这里插入图片描述

如果信号能量有限,即 0 < E < ∞ 0<E<∞ 0<E<,称为能量有限信号,简称能量信号。例如门函数,三角形脉冲,单边或双边指数衰减信号等

1.2. 帕斯瓦尔方程(能量方程)

在这里插入图片描述

1.3 能量密度谱E (ω)

定义:单位频率的信号能量。
物理意义:为了表征能量在频域中的分布情况而定义的
能量密度函数,简称为能量频谱或能量谱

在这里插入图片描述

ω = 2 π f \omega=2\pi f ω=2πf

在频带 d f df df内信号的能量为 E ( ω ) d f E(ω) df E(ω)df,因而信号在整个频率区间 ( − ∞ , ∞ ) (-∞, ∞) ,的总能量为:

上式与帕斯瓦尔能量方程进行比较可知,
在这里插入图片描述
由相关定理:
在这里插入图片描述
结论:能量有限信号的能量谱 E ( ω ) E (ω) E(ω)与自相关函数
R ( τ ) R(τ) R(τ)是一对傅里叶变换。
在这里插入图片描述
信号的能量谱 E ( ω ) E (ω) E(ω) ω ω ω的偶函数,它只取决于频谱函数的模量,而与相位无关。单位: J ⋅ s J·s Js
在这里插入图片描述

2 功率谱

2.1 信号功率

定义:时间 ( − ∞ , ∞ ) (-∞, ∞) ,区间上信号f(t)的平均功率。
在这里插入图片描述

如果信号功率有限,即 0 < P < ∞ 0<P<∞ 0<P<,信号称为功率有限信号,简称功率信号。如周期信号等。
在这里插入图片描述
f ( t ) f(t) f(t)中截取 ∣ t ∣ ≤ T / 2 |t|≤T/2 tT/2的一段,得到一个截尾函数 f T ( t ) f_T(t) fT(t),它可以表示为:
在这里插入图片描述
在这里插入图片描述

如果T是有限值,则 f T ( t ) f_T(t) fT(t)的能量也是有限的。令
在这里插入图片描述
由帕斯瓦尔能量方程, f T ( t ) f_T(t) fT(t)的能量 E T E_T ET可表示为:
在这里插入图片描述

在这里插入图片描述

2.2 功率密度谱

在这里插入图片描述

2.3 功率密度谱与自相关函数的关系

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

《工程信号与系统》作者:郭宝龙等
中国大学MOOC:信号与系统 ,西安电子科技大学,郭宝龙,朱娟娟

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二进制人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值