20211018 一些特殊矩阵


酉矩阵

酉矩阵(Unitary Matrix) A H A = A A H = I A^HA=AA^H=I AHA=AAH=I,则称酉矩阵(幺正矩阵、么正矩阵)。


正交矩阵

正交矩阵:如果酉矩阵的元素都是实数,叫做正交矩阵(正交矩阵都是正数)。 A T A = A A T = I A^TA=AA^T=I ATA=AAT=I


实对称矩阵

实对称矩阵:所有元素实数, A T = A A^T=A AT=A


实反对称矩阵

实反对称矩阵:所有元素实数, A T = − A A^T=-A AT=A


Hermitian矩阵

厄米特矩阵(Hermitian Matrix):对角线元素实数,非对角线可实可虚, A H = A A^H=A AH=A。特征值一定是实数。


正规矩阵

正规矩阵(Normal Matrix) A T A = A A T A^TA=AA^T ATA=AAT,则称为正规矩阵。

任意正规矩阵都可在经过一个酉变换后变为对角矩阵,反过来所有可在经过一个酉变换后变为对角矩阵的矩阵都是正规矩阵。


酉变换

酉变换


Schur定理

Schur定理定理 1.41 (1)设 A ∈ C n × n \boldsymbol{A} \in \mathbf{C}^{n \times n} ACn×n 的特征值为 λ 1 , ⋅ λ 2 , ⋯   , λ n \lambda_{1}, \cdot \lambda_{2}, \cdots, \lambda_{n} λ1,λ2,,λn, 则存 在酉矩阵 P \boldsymbol{P} P,使得
P − 1 A P = P H A P = [ λ 1 ∗ ⋯ ∗ λ 2 ⋱ ⋮ ⋱ ∗ λ n ] \boldsymbol{P}^{-1} \boldsymbol{A P}=\boldsymbol{P}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{P}=\left[\begin{array}{lllc} \lambda_{1} & * & \cdots & * \\ & \lambda_{2} & \ddots & \vdots \\ & & \ddots & * \\ & & & \lambda_{n} \end{array}\right] P1AP=PHAP= λ1λ2λn
(2)设 A ∈ R n × n \boldsymbol{A} \in \mathbf{R}^{n \times n} ARn×n 的特征值为 λ 1 , λ 2 , ⋯   , λ n \lambda_{1}, \lambda_{2}, \cdots, \lambda_{n} λ1,λ2,,λn, 且 λ i ∈ R ( i = 1 \lambda_{i} \in \mathbf{R}(i=1 λiR(i=1, 2 , ⋯   , n ) 2, \cdots, n) 2,,n), 则存在正交矩阵 Q Q Q, 使得
Q − 1 A Q = Q T A Q = [ λ 1 ∗ ⋯ ∗ λ 2 ⋱ ⋮ ⋱ ∗ λ n ] \boldsymbol{Q}^{-1} \boldsymbol{A} \boldsymbol{Q}=\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{Q}=\left[\begin{array}{lllc} \lambda_{1} & * & \cdots & * \\ & \lambda_{2} & \ddots & \vdots \\ & & \ddots & * \\ & & & \lambda_{n} \end{array}\right] Q1AQ=QTAQ= λ1λ2λn


酉相似

定理 1.42 (1)设 A ∈ C n × n \boldsymbol{A} \in \mathbf{C}^{n \times n} ACn×n, 则 A \boldsymbol{A} A 酉相似于对角矩阵的充要 条件是 A \boldsymbol{A} A 为正规矩阵;
(2)设 A ∈ R n × n \boldsymbol{A} \in \mathbf{R}^{n \times n} ARn×n, 且 A \boldsymbol{A} A 的特征值都是实数,则 A \boldsymbol{A} A 正交相似于对 角矩阵的充要条件是 A \boldsymbol{A} A 为正规矩阵.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值