20231018 自然常数的存在性

1

除了使用魏尔斯特拉斯定理,还可以使用不定式的洛必达法则来证明这一极限。首先,将 lim ⁡ x → ∞ ( 1 + 1 x ) x \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x xlim(1+x1)x 写成以下形式:

lim ⁡ x → ∞ ( 1 + 1 x ) x = lim ⁡ x → ∞ e x ln ⁡ ( 1 + 1 x ) \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x = \lim _{x \rightarrow \infty} e^{x \ln\left(1+\frac{1}{x}\right)} xlim(1+x1)x=xlimexln(1+x1)

现在,我们可以使用洛必达法则,对指数函数的极限求导:

lim ⁡ x → ∞ x ln ⁡ ( 1 + 1 x ) = ∞ ∞ \lim _{x \rightarrow \infty}x \ln\left(1+\frac{1}{x}\right) = \frac{\infty}{\infty} xlimxln(1+x1)=

然后对上式应用洛必达法则:

lim ⁡ x → ∞ ln ⁡ ( 1 + 1 x ) 1 x = lim ⁡ x → ∞ d d x ln ⁡ ( 1 + 1 x ) d d x 1 x \lim _{x \rightarrow \infty}\frac{\ln\left(1+\frac{1}{x}\right)}{\frac{1}{x}} = \lim _{x \rightarrow \infty}\frac{\frac{d}{dx}\ln\left(1+\frac{1}{x}\right)}{\frac{d}{dx}\frac{1}{x}} xlimx1ln(1+x1)=xlimdxdx1dxdln(1+x1)

对分子和分母同时求导:

= lim ⁡ x → ∞ d d x ln ⁡ ( 1 + 1 x ) − 1 x 2 = \lim _{x \rightarrow \infty}\frac{\frac{d}{dx}\ln\left(1+\frac{1}{x}\right)}{-\frac{1}{x^2}} =xlimx21dxdln(1+x1)

继续化简:

= lim ⁡ x → ∞ 1 1 + 1 x ( − 1 x 2 ) − 1 x 2 = lim ⁡ x → ∞ 1 + 1 x = 1 = \lim _{x \rightarrow \infty}\frac{\frac{1}{1+\frac{1}{x}}\left(-\frac{1}{x^2}\right)}{-\frac{1}{x^2}} = \lim _{x \rightarrow \infty}1+\frac{1}{x} = 1 =xlimx211+x11(x21)=xlim1+x1=1

最后,将洛必达法则的结果代回原极限:

lim ⁡ x → ∞ ( 1 + 1 x ) x = e 1 = e \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x = e^1 = e xlim(1+x1)x=e1=e

因此, lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x=e xlim(1+x1)x=e 成立。这是使用洛必达法则的另一种方法。

2

魏尔斯特拉斯定理是一个重要的极限定理,它可以用来证明 lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x=e xlim(1+x1)x=e

首先,我们可以使用魏尔斯特拉斯定理的形式之一来证明这一极限。魏尔斯特拉斯定理的一种形式是:

如果函数f(x)是一个连续函数,而g(x)是一个无穷大的函数,那么:

lim ⁡ x → ∞ [ f ( x ) ] g ( x ) = e lim ⁡ x → ∞ [ f ( x ) − 1 ] ⋅ g ( x ) \lim _{x \rightarrow \infty} [f(x)]^{g(x)} = e^{\lim _{x \rightarrow \infty} [f(x) - 1] \cdot g(x)} xlim[f(x)]g(x)=elimx[f(x)1]g(x)

在这个情况下,我们可以将 ( 1 + 1 x ) x \left(1+\frac{1}{x}\right)^x (1+x1)x 视为 [ f ( x ) ] g ( x ) [f(x)]^{g(x)} [f(x)]g(x) 的形式,其中:

f ( x ) = 1 + 1 x f(x) = 1 + \frac{1}{x} f(x)=1+x1
g ( x ) = x g(x) = x g(x)=x

然后,我们计算:

lim ⁡ x → ∞ [ f ( x ) − 1 ] ⋅ g ( x ) = lim ⁡ x → ∞ ( 1 x ) ⋅ x = 1 \lim _{x \rightarrow \infty} [f(x) - 1] \cdot g(x) = \lim _{x \rightarrow \infty} \left(\frac{1}{x}\right) \cdot x = 1 xlim[f(x)1]g(x)=xlim(x1)x=1

所以,根据魏尔斯特拉斯定理,我们有:

lim ⁡ x → ∞ ( 1 + 1 x ) x = e 1 = e \lim _{x \rightarrow \infty} \left(1+\frac{1}{x}\right)^x = e^1 = e xlim(1+x1)x=e1=e

因此, lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x=e xlim(1+x1)x=e 成立。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值