线性系统时域的分析及校正

概述

对于已经求得的输出响应,如何判断这个输出响应是不是符合我们的预期,如何评判这个输出响应的优越性呢?那么。给出如下概念,作为用以评判输出响应的指标。
延迟时间 t d t_d td: 阶跃响应第一次达到终值的50%所需的时间
上升时间 t r t_r tr:阶跃响应从终值的10%上升到终值的90%所需的时间;有振荡时,可定义为从 0 到第一次达到终值所需的时间。
峰值时间 t p t_p tp: 阶跃响应越过终值达到第一个峰值所需的时间。
调节时间 t s t_s ts:阶跃响应到达并保持在终值 5%误差带内所需的最短时间。
超 调 量 δ % δ% δ:峰值超出终值的百分比, δ % = h ( t p ) − h ( ∞ ) h ( ∞ ) × 100 % \delta \% =\frac{h(t_p)-h(\infty)}{h(\infty )}\times 100\% δ%=h()h(tp)h()×100%

让我们在图中更为直观的感受一下。

在这里插入图片描述

图1

一阶系统的时间响应及动态性能

一阶系统闭环传递函数标准形式

给出一个一阶系统的单位负反馈的开环传递函数 G ( s ) = K s G(s)=\frac{K}{s} G(s)=sK
则其闭环传递函数的标准形式为
Φ ( s ) = K s + K = 1 s k + 1 → 1 k = T 1 T s + 1 \Phi(s)=\frac{K}{s+K}=\frac{1}{\frac{s}{k}+1}\xrightarrow{\frac{1}{k}=T}\frac{1}{Ts+1} Φ(s)=s+KK=ks+11k1=T Ts+11

单位阶跃信号的时间响应

接下来,在外界环境下,突然出现噪声(单位阶跃信号),那么对应考虑的是系统的单位阶跃响应,最后经过无限长的时间之后应该趋于稳定。于是,求系统的单位阶跃响应。
C ( s ) = Φ ( s ) ⋅ R ( s ) = 1 T s + 1 ⋅ 1 s = 1 s − 1 s + 1 T C(s)=\Phi(s)\cdot R(s)=\frac{1}{Ts+1}\cdot \frac{1}{s}=\frac{1}{s}-\frac{1}{s+\frac{1}{T}} C(s)=Φ(s)R(s)=Ts+11s1=s1s+T11

接下来,对上式进行拉普拉斯反变换1求得:
c ( t ) = 1 − e − 1 T t c(t)=1-e^{-\frac{1}{T}t} c(t)=1eT1t
假设 K = 1 K=1 K=1,即 T = 1 T=1 T=1,利用matlab仿真给出图像

%定义符号变量
syms s t T
%列写系统闭环传递函数
sys = 1/(T*s+1)
%获得输出单位复域响应函数
C=sys*1/s
%拉普拉斯反变化获取单位时域响应函数
c=ilaplace(C,s,t)
%定义特殊数据类型的系统闭环传递函数
sys1=tf(1,[1,1]);
step(sys1);%绘制时域图

输出结果如下:

sys1 =

    1
  -----
  s + 1
 
Continuous-time transfer function.

在这里插入图片描述

图2

由图像可知,曲线单调响应,因此,超调量为0。同时,无需计算上升时间 t r t_r tr,延迟时间 t d t_d td,和峰值时间 t p t_p tp,只需要计算调节时间 t s t_s ts。因此,有如下计算过程:
c ( t s ) = 1 − e − 1 T t s = 0.95 e − 1 T t s = 0.05 t s = − T ln ⁡ 0.05 = 3 T c(t_s)=1-e^{-\frac{1}{T}t_s}=0.95\\ e^{-\frac{1}{T}t_s}=0.05\\ t_s=-T\ln{0.05}=3T c(ts)=1eT1ts=0.95eT1ts=0.05ts=Tln0.05=3T
给出其他的一些相关数据:
h ( T ) = 0.632   h ( ∞ ) h ( 2 T ) = 0.865   h ( ∞ ) h ( 3 T ) = 0.95   h ( ∞ ) h ( 4 T ) = 0.982   h ( ∞ ) \begin{array}{l} h(T)=0.632 \ h(\infty) \\ h(2 T)=0.865\ h(\infty) \\ h(3 T)=0.95\ h(\infty) \\ h(4 T)=0.982 \ h(\infty) \end{array} h(T)=0.632 h()h(2T)=0.865 h()h(3T)=0.95 h()h(4T)=0.982 h()

单位脉冲信号的时间响应

C ( s ) = Φ ( s ) ⋅ R ( s ) = 1 T s + 1 ⋅ 1 = 1 T s + 1 T C(s)=\Phi(s)\cdot R(s)=\frac{1}{Ts+1}\cdot 1=\frac{\frac{1}{T}}{s+\frac{1}{T}} C(s)=Φ(s)R(s)=Ts+111=s+T1T1
对上式进行拉普拉斯反变换,得时间响应函数
c ( t ) = 1 T e − 1 T t c(t)=\frac{1}{T}e^{-\frac{1}{T}t} c(t)=T1eT1t
绘制单位脉冲响应matlab代码;

%定义符号变量
syms s t T
%列写系统闭环传递函数
sys = 1/(T*s+1)
%获得输出单位复域响应函数
C=sys*1
%拉普拉斯反变化获取单位时域响应函数
c=ilaplace(C,s,t)
%将T=1带入算式
h=subs(c,T,1)
%定义特殊数据类型的系统闭环传递函数
sys=tf(1,[1,1]);
impulse(sys);%绘制时域图
hold on;  % 将曲线保持在图形中
grid on;%grid off/on关闭或打开图形网格线
xlabel('t');ylabel('c(t)');title('单位脉冲响应');

在这里插入图片描述

图3

单位斜坡信号响应

C ( s ) = Φ ( s ) ⋅ R ( s ) = 1 T s + 1 ⋅ 1 s 2 C(s)=\Phi(s)\cdot R(s)=\frac{1}{Ts+1}\cdot \frac{1}{s^2} C(s)=Φ(s)R(s)=Ts+11s21
对上式进行拉普拉斯反变换,得时间响应函数
c ( t ) = t − T + T   e − t T c(t)=t-T+T\,{\mathrm{e}}^{-\frac{t}{T}} c(t)=tT+TeTt

%定义符号变量
syms s t T
%列写系统闭环传递函数
sys = 1/(T*s+1)
%获得输出单位复域响应函数
C=sys*1/s^2
%拉普拉斯反变化获取单位时域响应函数
c=ilaplace(C,s,t)
%将T=1带入算式
h=subs(c,T,1)

sys=tf(1,[1,1]);
t0=0:0.1:10;
C=t0;
lsim(sys,C,t0) %绘制误差时域图;%绘制时域图
hold on;  % 将曲线保持在图形中
grid on;%grid off/on关闭或打开图形网格线
xlabel('t');ylabel('c(t)');title('单位斜坡响应');

在这里插入图片描述

图4

matlab求动态性能指标代码

%% 函数功能:求解负反馈系统传递函数,并绘制单位阶跃或脉冲响应图,并求出动态指标
% 函数参数:
% str : 单位阶跃响应"step"还是单位脉冲响应"impulse"
% K1,K2,K3,K4,
% fan:正反馈为1,负反馈为-1
% 函数返回值:
% index_data = [超调量 峰值时间tp 调节时间ts]
function index_data = Time_domain_analysis(str,K1,K2,K3,K4,fan)
%%%%%%%%%%%系统建模%%%%%%%%%%%%%%%%%%%%
num = K1;
den = K2;
% den = conv([1 1],[T 1]);%多项式相乘,例如(x^2+3)(x+1)表示为[1,0,3],[1,1]
G1 = tf(num,den);%建立系统模型,返回符号变量表达式
H1 = tf(K3,K4);
% sysa1 = feedback(G1,H1,-1);%负反馈
% sysa2 = series(G2,sysa1);%串联
% sysb1 = parallel(G2,H1);%并联
sys = feedback(G1,H1,fan);%负反馈
dt = 0.003;%仿真步长
% t = 0:dt:3;%设定仿真时间
% figure('name','单位阶跃响应')%创建一个窗口
if(str == "impulse")
    impulse(sys);%绘制时域图
    [y,x] = impulse(sys);%获取数值
    hold on;  % 将曲线保持在图形中
    grid on;%grid off/on关闭或打开图形网格线
    xlabel('t');ylabel('c(t)');title('单位脉冲响应');
end
if(str == "step")
    step(sys);%绘制时域图
    [y,x] = step(sys);%获取数值
    hold on;  % 将曲线保持在图形中
    grid on;%grid off/on关闭或打开图形网格线
    xlabel('t');ylabel('c(t)');title('单位阶跃响应');
end

%%%%%%%%%%%求解动态指标%%%%%%%%%%%%%%%%%%%%
maxy = max(y);%响应的最大偏移量
yss = y(end);%响应的终值
pos = (maxy - yss)/yss;%求超调量
tp = x(y==maxy);%峰值时间
y1 = 1.05*yss;%稳态上线
y2 = 0.95*yss;%稳态下线

x1 = x(y>y1);%获得超过稳态上线的时间段
x2 = x(y<y2);%获取低于稳态下线的时间段
ts = max([x1;x2]);%两个时间端中最大的时间点为调节时间
index_data = [pos tp ts];

% legend('(a)单位阶跃响应','(b)单位阶跃响应')
end

二阶系统的时间响应及动态性能

二阶系统闭环传递函数标准形式

二阶系统得典型开环传递函数为:
G ( s ) = ω n 2 s ( s + 2 ξ ω n ) G(s)=\frac{\omega_n^2}{s(s+2\xi\omega_n)} G(s)=s(s+2ξωn)ωn2
则,写成闭环传递函数为:
Φ ( s ) = ω n 2 s 2 + 2 ξ ω n s + ω n 2 \Phi(s)=\frac{\omega_n^2}{s^2+2\xi\omega_ns+\omega_n^2} Φ(s)=s2+2ξωns+ωn2ωn2
其中, ξ \xi ξ被普遍称之为阻尼比,而 ω n \omega_n ωn被称之为无阻尼自然频率。
其特征方程为:
s 2 + 2 ξ ω n s + ω n 2 = 0 s^2+2\xi\omega_ns+\omega_n^2=0 s2+2ξωns+ωn2=0

不同取值下的单位阶跃响应

为研究系统的稳定性,同样,首先研究系统在外加噪音的条件下能否稳定的问题。
ξ = 0 \xi=0 ξ=0时,又称无阻尼状态,两个特征根为 λ 1 , 2 = ± j ω n \lambda_{1,2}=\pm j\omega_n λ1,2=±jωn,绘制单位阶跃响应。

在这里插入图片描述

图5

1 > ξ > 0 1>\xi>0 1>ξ>0时,又称欠阻尼状态,两个特征根为 λ 1 , 2 = − ξ ω n ± j 1 − ξ 2 ω n \lambda_{1,2}=-\xi \omega_n\pm j\sqrt{1-\xi^2} \omega_n λ1,2=ξωn±j1ξ2 ωn,绘制单位阶跃响应。

在这里插入图片描述

图6

ξ = 1 \xi=1 ξ=1时,称之为临界阻尼状态,两个特征根为 λ 1 , 2 = − ω n \lambda_{1,2}=- \omega_n λ1,2=ωn,绘制单位阶跃响应。

在这里插入图片描述

图7

ξ > 1 \xi>1 ξ>1时,称为过阻尼状态,两个特征根为 λ 1 , 2 = − ξ ω n ± ξ 2 − 1 ω n \lambda_{1,2}=-\xi \omega_n\pm \sqrt{\xi^2-1} \omega_n λ1,2=ξωn±ξ21 ωn,绘制单位阶跃响应。

在这里插入图片描述

图8

给出绘制如上图像的matlab代码:

wn=1;%定义自然频率取值
%ki=0;
%ki=0.5;
%ki=1;
ki=2;%定义阻尼比取值
sys=tf(wn^2,[1,2*ki*wn,wn^2]);
t0=0:0.1:30;
step(sys,t0)%绘制时域图
hold on;  % 将曲线保持在图形中
grid on;%grid off/on关闭或打开图形网格线
xlabel('t');ylabel('c(t)');title('单位阶跃响应');

临界阻尼和过阻尼条件下的动态性能指标

同样,由上图8可知,响应函数无超调量,那么动态性能指标中有意义的唯有调节时间 t s t_s ts。接下来讲解求调节时间 t s t_s ts的方法。
ξ ⩾ 1 \xi \geqslant 1 ξ1时,特征方程有如下两根;
λ 1 , 2 = − ξ ω n ± ξ 2 − 1 ω n \lambda_{1,2}=-\xi \omega_n\pm \sqrt{\xi^2-1} \omega_n λ1,2=ξωn±ξ21 ωn

{ λ 1 = − 1 T 1 λ 2 = − 1 T 2 \left\{ \begin{array}{c} \lambda_1=-\frac{1}{T_1}\\ \lambda_2=-\frac{1}{T_2}\\ \end{array} \right. {λ1=T11λ2=T21
则:
{ ω n = 1 T 1 T 2 ξ = 1 T 1 + 1 T 2 2 ω n = 1 2 1 + T 1 T 2 T 1 T 2 \left\{ \begin{array}{c}\begin{aligned} \omega_n&=\frac{1}{\sqrt{T_1T_2}} \\ \xi&=\frac{\frac{1}{T_1}+\frac{1}{T_2}}{2\omega_n}=\frac{1}{2}\frac{1+\frac{T_1}{T_2}}{\sqrt{\frac{T_1}{T_2}}}\\ \end{aligned} \end{array} \right. ωnξ=T1T2 1=2ωnT11+T21=21T2T1 1+T2T1
接下来,我们求单位阶跃响应函数;
C ( s ) = Φ ( s ) ⋅ R ( s ) = ω n 2 s 2 + 2 ξ ω n s + ω n 2 ⋅ 1 s = 1 / s + 1 T 2 T 1 − 1 1 s + 1 T 1 + 1 T 1 T 2 − 1 1 s + 1 T 2 \begin{aligned} C(s)&=\Phi(s)\cdot R(s)=\frac{\omega_n^2}{s^2+2\xi\omega_ns+\omega_n^2}\cdot \frac{1}{s}\\ &=1/s+\frac{1}{\frac{T_2}{T_1}-1}\frac{1}{s+\frac{1}{T_1}}+\frac{1}{\frac{T_1}{T_2}-1}\frac{1}{s+\frac{1}{T_2}}\\ \end{aligned} C(s)=Φ(s)R(s)=s2+2ξωns+ωn2ωn2s1=1/s+T1T211s+T111+T2T111s+T211
对上式进行拉普拉斯反变换,得:
c ( t ) = L − 1 [ C ( s ) ] = 1 + 1 T 2 T 1 − 1 e − t T 1 + 1 T 1 T 2 − 1 e − t T 2 \begin{aligned} c(t)&=L^{-1}\left[ C(s)\right]=1+\frac{1}{\frac{T_2}{T_1}-1}e^{-\frac{t}{T_1}}+\frac{1}{\frac{T_1}{T_2}-1}e^{-\frac{t}{T_2}} \end{aligned} c(t)=L1[C(s)]=1+T1T211eT1t+T2T111eT2t
因此,调节时间满足如下方程:
c ( t s ) = 1 + 1 T 2 T 1 − 1 e − t s T 1 + 1 T 1 T 2 − 1 e − t s T 2 = 1 + 1 T 2 T 1 − 1 e − t s T 1 + 1 T 1 T 2 − 1 e − t s T 1 T 1 T 2 = 0.95 \begin{aligned} c(t_s)&=1+\frac{1}{\frac{T_2}{T_1}-1}e^{-\frac{t_s}{T_1}}+\frac{1}{\frac{T_1}{T_2}-1}e^{-\frac{t_s}{T_2}}\\ &=1+\frac{1}{\frac{T_2}{T_1}-1}e^{-\frac{t_s}{T_1}}+\frac{1}{\frac{T_1}{T_2}-1}e^{-\frac{t_s}{T_1} \frac{T_1}{T_2}}\\ &=0.95 \end{aligned} c(ts)=1+T1T211eT1ts+T2T111eT2ts=1+T1T211eT1ts+T2T111eT1tsT2T1=0.95
将上述方程变为关于 T 1 T 2 \frac{T_1}{T_2} T2T1的函数,即:
t s T 1 = f ( T 1 T 2 ) = f ( ξ ) \frac{t_s}{T_1}=f(\frac{T_1}{T_2})=f(\xi) T1ts=f(T2T1)=f(ξ)
那么我们可以利用matlab绘制出此隐函数图像,然后根据不同的 T 1 , T 2 T_1,T_2 T1,T2取值,来计算不同的 t s t_s ts,隐函数图像的绘制代码如下:

f=@(x,y) 1+1./(1/x-1).*exp(-y)+1./(x-1).*exp(-x.*y)-0.95
xmin = 1;ymin = 3;
xmax = 16;ymax = 4.8;
figure(2)
ezplot(f,[xmin,xmax,ymin,ymax])
hold on
ylabel('$ y=\frac{ts}{T1}$',"Interpreter","latex")
xlabel('$ x=\frac{T1}{T2}$',"Interpreter","latex")
title('$ 1+\frac{1}{\frac{T_2}{T_1}-1}e^{-\frac{t_s}{T_1}}+\frac{1}{\frac{T_1}{T_2}-1}e^{-\frac{t_s}{T_1} \frac{T_1}{T_2}}=0.95 $',"Interpreter","latex")
grid on

在这里插入图片描述

欠阻尼条件条件下的动态性能指标

  1. 0 < ξ < 1 0<\xi<1 0<ξ<1时,特征方程有的两根;

(1). 直角坐标表示:

λ 1 , 2 = − ξ ω n ± j 1 − ξ 2 ω n \lambda_{1,2}=-\xi \omega_n\pm j\sqrt{1-\xi^2} \omega_n λ1,2=ξωn±j1ξ2 ωn

(2). 极坐标表示:
{ ∣ λ ∣ = ω n ∠ λ = β    { cos ⁡ β = ξ sin ⁡ β = 1 − ξ 2 \left\{\begin{aligned} |\lambda|&=\omega_n\\ \angle {\lambda}&=\beta \end{aligned}\right. \ \ \left\{\begin{aligned} \cos{\beta}&=\xi \\ \sin{\beta}&=\sqrt{1-\xi^2 } \end{aligned} \right. {λλ=ωn=β  {cosβsinβ=ξ=1ξ2
在这里插入图片描述

图9. 欠阻尼二阶系统极点表示
  1. 求单位阶跃响应函数:
    C ( s ) = Φ ( s ) R ( s ) = ω n 2 s 2 + 2 ξ ω n s + ω n 2 ⋅ 1 s = 1 s − s + 2 ξ ω n ( s + ξ ω n ) 2 + ( 1 − ξ 2 ) ω 2 = 1 s − s + ξ ω n ( s + ξ ω n ) 2 + ( 1 − ξ 2 ) ω n 2 − ξ 1 − ξ 2 ⋅ 1 − ξ 2 ω n ( s + ξ ω n ) 2 + ( 1 − ξ 2 ) ω n 2 \begin{aligned} C(s)&=\Phi(s) R(s)=\frac{\omega_n^2}{s^2+2\xi\omega_ns+\omega_n^2} \cdot \frac{1}{s}\\ &=\frac{1}{s} - \frac{s+2\xi \omega_n}{(s+\xi \omega_n)^2 + (1-\xi^2)\omega^2} \\ &=\frac{1}{s}-\frac{s+\xi \omega _n}{(s+\xi \omega _n)^2+(1-\xi ^2)\omega_n^2}-\frac{\xi}{\sqrt{1-\xi^{2}}} \cdot\frac{\sqrt{1-\xi^{2}} \omega_{n}}{\left(s+\xi \omega_{n}\right)^{2}+\left(1-\xi^{2}\right) \omega_{n}^{2}} \end{aligned} C(s)=Φ(s)R(s)=s2+2ξωns+ωn2ωn2s1=s1(s+ξωn)2+(1ξ2)ω2s+2ξωn=s1(s+ξωn)2+(1ξ2)ωn2s+ξωn1ξ2 ξ(s+ξωn)2+(1ξ2)ωn21ξ2 ωn
    由,拉普拉斯逆变换公式:
    f ( x ) = L − 1 [ ω s 2 + ω 2 ] = sin ⁡ ω t f ( x ) = L − 1 [ s s 2 + ω 2 ] = cos ⁡ ω t \begin{aligned} f(x)&=L^{-1}[\frac{\omega}{s^{2}+\omega^{2}}]=\sin \omega t\\ f(x)&=L^{-1}[\frac{s}{s^{2}+\omega^{2}}]=\cos \omega t \end{aligned} f(x)f(x)=L1[s2+ω2ω]=sinωt=L1[s2+ω2s]=cosωt
    以及,复位移定理:
    L ∣ f ( t ) ⋅ e − a t ∣ = F ( s + a ) L\left|f(t) \cdot e^{-a t}\right|=F(s+a) Lf(t)eat=F(s+a)
    可得如下结果:
    结合拉普拉斯逆变换公式和复位移定理,可得如下结果:
    c ( t ) = 1 − e − ξ ω n t cos ⁡ 1 − ξ 2 ω n t − ξ 1 − ξ 2 e − ξ ω n x sin ⁡ 1 − ξ 2 ω n t = 1 − e − ξ ω n t 1 − ξ 2 [ 1 − ξ 2 cos ⁡ 1 − ξ 2 ω n t + ξ sin ⁡ 1 − ξ 2 ω n t ] = ξ = cos ⁡ β , 1 − ξ 2 = sin ⁡ β 1 − e − ξ ω n t 1 − ξ 2 [ sin ⁡ β ⋅ cos ⁡ 1 − ξ 2 ω n t + cos ⁡ β ⋅ sin ⁡ 1 − ξ 2 ω n t ] = 1 − e − ξ ω n t 1 − ξ 2 sin ⁡ ( 1 − ξ 2 ω n t + β ) ( 0 ≤ ξ < 1 ) \begin{aligned} c(t)&=1-e^{-\xi \omega_{n} t} \cos \sqrt{1-\xi^{2}} \omega_{n} t-\frac{\xi}{\sqrt{1-\xi^{2}}} e^{-\xi \omega_n x} \sin \sqrt{1-\xi^{2}} \omega_{n} t\\ &=1-\frac{e^{-\xi \omega_nt}}{\sqrt{1-\xi^{2}}}\left[\sqrt{1-\xi^{2}} \cos \sqrt{1-\xi^{2}} \omega_{n} t+\xi \sin \sqrt{1-\xi^{2}} \omega_{n} t\right]\\ &\xlongequal{\xi=\cos\beta,\sqrt{1-\xi^2}=\sin\beta}1-\frac{e^{-\xi \omega_n t}}{\sqrt{1-\xi^{2}}}\left[\sin \beta \cdot \cos \sqrt{1-\xi^{2}} \omega_{n} t+\cos \beta \cdot \sin \sqrt{1-\xi^{2}} \omega_{n} t\right]\\ &=1-\frac{e^{-\xi \omega_n t}}{\sqrt{1-\xi^{2}}} \sin \left(\sqrt{1-\xi^{2}} \omega_{n} t+\beta\right) \quad(0 \leq \xi<1) \end{aligned} c(t)=1eξωntcos1ξ2 ωnt1ξ2 ξeξωnxsin1ξ2 ωnt=11ξ2 eξωnt[1ξ2 cos1ξ2 ωnt+ξsin1ξ2 ωnt]ξ=cosβ,1ξ2 =sinβ 11ξ2 eξωnt[sinβcos1ξ2 ωnt+cosβsin1ξ2 ωnt]=11ξ2 eξωntsin(1ξ2 ωnt+β)(0ξ<1)
    因此,当 0 < ξ < 1 0 < \xi<1 0<ξ<1时,图像如图6,表达式如下;
    c ( t ) = 1 − e − ξ ω n t 1 − ξ 2 sin ⁡ ( 1 − ξ 2 ω n t + β ) c(t)=1-\frac{e^{-\xi \omega_n t}}{\sqrt{1-\xi^{2}}} \sin \left(\sqrt{1-\xi^{2}} \omega_{n} t+\beta\right) c(t)=11ξ2 eξωntsin(1ξ2 ωnt+β)
    ξ = 0 \xi=0 ξ=0时, β = 9 0 ∘ \beta=90^{\circ} β=90,图像如图5,表达式如下;
    c ( t ) = 1 − sin ⁡ ( ω n t + 9 0 ∘ ) = 1 − cos ⁡ ω n t c(t)=1-\sin \left(\omega_{n} t+90^{\circ}\right)=1-\cos \omega_{n} t c(t)=1sin(ωnt+90)=1cosωnt
  2. 求单位阶跃响应的动态性能指标
    (1). 峰值时间 t p t_p tp.
    为了求峰值时间 t p t_p tp,在数学上可以直接对单位阶跃响应的表达式进行求导,但是相当复杂.为了简化计算,我们知道拉氏变换中,当初值条件为0时,有如下微分定理:
    L [ d n f ( t ) d t n ] = s n F ( s ) L\left[\frac{d^{n} f(t)}{d t^{n}}\right]=s^{n} F(s) L[dtndnf(t)]=snF(s)
    那么,令 n = 1 n=1 n=1
    L [ d ′ f ( t ) d t ] = s F ( s ) L\left[\frac{d' f(t)}{d t}\right]=s F(s) L[dtdf(t)]=sF(s)
    因此,
    c ′ ( t ) = L − 1 [ Φ ( s ) ] = L − 1 [ ω n 2 s 2 + 2 ξ ω n s + ω n 2 ] = L − 1 [ ω n 1 − ξ 2 ⋅ 1 − ξ 2 ω n ( s + ξ ω n ) 2 + ( 1 − ξ 2 ) ω n 2 ] = ω n 1 − ξ 2 e − ξ a j sin ⁡ 1 − ξ 2 ω n t \begin{aligned} c'(t)&=L^{-1}\left[\Phi(s)\right]=L^{-1}\left[\frac{\omega_n^2}{s^2+2\xi\omega_ns+\omega_n^2} \right]\\ &=L^{-1}\left[\frac{\omega_{n}}{\sqrt{1-\xi^{2}}} \cdot \frac{\sqrt{1-\xi^{2}} \omega_{n}}{\left(s+\xi \omega_{n}\right)^{2}+\left(1-\xi^{2}\right) \omega_{n}^{2}}\right] \\ &=\frac{\omega_{n}}{\sqrt{1-\xi^{2}}} e^{-\xi_{a j}} \sin \sqrt{1-\xi^{2}} \omega_{n} t \\ \end{aligned} c(t)=L1[Φ(s)]=L1[s2+2ξωns+ωn2ωn2]=L1[1ξ2 ωn(s+ξωn)2+(1ξ2)ωn21ξ2 ωn]=1ξ2 ωneξajsin1ξ2 ωnt
    我们知道,令 c ′ ( t 0 ) = 0 c'(t_0)=0 c(t0)=0,则:
    sin ⁡ 1 − ξ 2 ω n t = 0 1 − ξ 2 ω n t = 0 , π , 2 π , 3 π \begin{array}{l} \sin \sqrt{1-\xi^{2}} \omega_{n} t=0 \\ \sqrt{1-\xi^{2}} \omega_{n} t=0, \pi, 2 \pi, 3 \pi \end{array} sin1ξ2 ωnt=01ξ2 ωnt=0,π,2π,3π
    我们可得,极值的时间为(注意记住下述公式,后面要用);
    t m = k π 1 − ξ 2 ω n ( k = 1 , 2 , 3... ) (1) t_m = \frac{k\pi}{\sqrt{1-\xi^{2}} \omega_{n}}(k=1,2,3...)\tag{1} tm=1ξ2 ωnkπ(k=1,2,3...)(1)
    易得峰值时间为;
    t p = π 1 − ξ 2 ω n t_{p}=\frac{\pi}{\sqrt{1-\xi^{2}} \omega_{n}} tp=1ξ2 ωnπ
    给出一个记忆方法,如图9(同下图一样), t p t_p tp可表示为 π \pi π除以极坐标表示法的虚部.

(2). 超调量 σ % \sigma \% σ%.
t p t_p tp带入响应函数得如下结果:
c ( t p ) = 1 − e − ξ ω n t 1 − ξ 2 sin ⁡ ( 1 − ξ 2 ω n t p + β ) = 1 − e − ξ π / 1 − ξ 2 1 − ξ 2 sin ⁡ ( π + β ) = 1 + e − ξ π / 1 − ξ 2 \begin{aligned} c\left(t_{p}\right) &=1-\frac{e^{-\xi \omega_n t}}{\sqrt{1-\xi^{2}}} \sin \left(\sqrt{1-\xi^{2}} \omega_{n} t_{p}+\beta\right) \\ &=1-\frac{e^{-\xi \pi / \sqrt{1-\xi^{2}}}}{\sqrt{1-\xi^{2}}} \sin (\pi+\beta) \\ &=1+e^{-\xi \pi / \sqrt{1-\xi^{2}}}\\ \end{aligned} c(tp)=11ξ2 eξωntsin(1ξ2 ωntp+β)=11ξ2 eξπ/1ξ2 sin(π+β)=1+eξπ/1ξ2
由此根据超调量定义,可得:
σ % = h ( t p ) − h ( ∞ ) h ( ∞ ) × 100 % = e − ξ π / 1 − ξ 2 × 100 % \begin{aligned} \sigma \%&=\frac{h\left(t_{p}\right)-h(\infty)}{h(\infty)} \times 100 \%\\ &=e^{-\xi \pi / \sqrt{1-\xi^{2}}} \times 100 \%\\ \end{aligned} σ%=h()h(tp)h()×100%=eξπ/1ξ2 ×100%
那么接下来给出记忆方法, e f ( ξ ) e^{f(\xi)} ef(ξ),其中, f ( ξ ) f(\xi) f(ξ)的公式如下;
f ( ξ ) = π σ ω i f(\xi)=\frac{\pi\sigma}{\omega_i} f(ξ)=ωiπσ
而, σ \sigma σ ω i \omega_i ωi的表达式如图9所示。

即,欠阻尼二阶系统极点表示法中的实部乘以 π \pi π除以虚部.
用matlab绘制出图像,代码如下;

clc;clear;
figure
ezplot('y=exp((-x)*pi/sqrt(1-x^2))*100',[0,1,0,100])
hold on
title('$\sigma=e^{-\xi \pi / \sqrt{1-\xi^{2}}} \times 100 \% $',"Interpreter","latex")
ylabel('$\sigma\% $',"Interpreter","latex")
xlabel('$\xi$',"Interpreter","latex")
grid on

在这里插入图片描述

图10

(3). 调节时间 t s t_s ts
这里的调节时间不同于原本的定义,由于工程上要保证调节时间准确无误又计算简便,由此给出了另一套定义方式——包络线稳定在5%误差带内所需的最短时间。

  • 包络线的定义

接下来将介绍一下“包络线”的定义;
由于, 公式(1) ,我们将 t m t_m tm代入响应函数中,同 c ( t p ) c(t_p) c(tp)一样,有;
c ( t m ) = 1 − e − ξ π / 1 − ξ 2 1 − ξ 2 sin ⁡ ( k π + β ) ( k = 1 , 2 , 3... ) c (t_m)=1-\frac{e^{-\xi \pi / \sqrt{1-\xi^{2}}}}{\sqrt{1-\xi^{2}}} \sin (k\pi+\beta) (k=1,2,3...) c(tm)=11ξ2 eξπ/1ξ2 sin(kπ+β)(k=1,2,3...)
我们定义:
t m a x = k π 1 − ξ 2 ω n ( k = 1 , 3 , 5... ) t m i n = k π 1 − ξ 2 ω n ( k = 2 , 4 , 6... ) t_{max} = \frac{k\pi}{\sqrt{1-\xi^{2}} \omega_{n}}(k=1,3,5...)\\ t_{min} = \frac{k\pi}{\sqrt{1-\xi^{2}} \omega_{n}}(k=2,4,6...) tmax=1ξ2 ωnkπ(k=1,3,5...)tmin=1ξ2 ωnkπ(k=2,4,6...)
由上定义,将 t m a x t_{max} tmax带入响应函数中,有;
c ( t m a x ) = 1 − e − ξ ω n t m a x 1 − ξ 2 sin ⁡ ( k π + β ) = 1 + e − ξ ω n t m a x (2) \begin{aligned} c(t_{max}) &= 1-\frac{e^{-\xi \omega_n t_{max}}}{\sqrt{1-\xi^{2}}} \sin (k\pi+\beta)\\ &=1+e^{-\xi \omega_n t_{max}} \end{aligned} \tag{2} c(tmax)=11ξ2 eξωntmaxsin(kπ+β)=1+eξωntmax(2)
而后将 t m a x t_{max} tmax换成 t t t,得上包络线公式;
f ( t ) = 1 + e − ξ ω n t f(t)=1+e^{-\xi \omega_n t} f(t)=1+eξωnt
t m i n t_{min} tmin带入响应函数中得下包络线,有;
c ( t m i n ) = 1 − e − ξ ω n t m i n 1 − ξ 2 sin ⁡ ( k π + β ) = 1 − e − ξ ω n t m i n (3) \begin{aligned} c(t_{min}) &= 1-\frac{e^{-\xi \omega_n t_{min}}}{\sqrt{1-\xi^{2}}} \sin (k\pi+\beta)\\ &=1-e^{-\xi \omega_n t_{min}} \end{aligned} \tag{3} c(tmin)=11ξ2 eξωntminsin(kπ+β)=1eξωntmin(3)
而后将 t m i n t_{min} tmin换成 t t t,得下包络线公式;
f ( t ) = 1 − e − ξ ω n t f(t)=1-e^{-\xi \omega_n t} f(t)=1eξωnt

我们将(2)式和(3)式在图中画出来.
如下是matlab代码;

figure
wn=1;%定义自然频率取值
ki=0.1;%定义阻尼比取值
sys=tf(wn^2,[1,2*ki*wn,wn^2]);
t0=0:0.1:30;
step(sys,t0)%绘制时域图
hold on;  % 将曲线保持在图形中
grid on;%grid off/on关闭或打开图形网格线
xlabel('t');ylabel('c(t)');title('单位阶跃响应');
t = 0:1:30;
y1 = 1+exp((-ki).*t./sqrt(1-ki^2));
y2 = 1-exp((-ki).*t./sqrt(1-ki^2));
h1 = plot(t,y1,'r-')
h2 = plot(t,y2,'g-')
legend([h1,h2],{'上包络线','下包络线'})

在这里插入图片描述

从图中可看出,两条包络线将响应曲线完全囊括在内。

  • 调节时间 t s t_s ts的计算
    由新调节时间定义,结合包络线表达式(1),可做如下推导;
    ∣ 1 + e − ξ ω n t s 1 − ξ 2 − 1 ∣ = e − ξ ω n t s 1 − ξ 2 = 0.05 \left|1+\frac{e^{-\xi\omega_n t_s}}{\sqrt{1-\xi^{2}}}-1\right|=\frac{e^{-\xi\omega_n t_{s}}}{\sqrt{1-\xi^{2}}}=0.05 1+1ξ2 eξωnts1=1ξ2 eξωnts=0.05
    由于, ln ⁡ ( 1 − ξ 2 ) ≈ 1 ( 0.3 < ξ < 0.8 ) \ln\left(1-\xi^{2}\right)\approx1\quad(0.3<\xi<0.8) ln(1ξ2)1(0.3<ξ<0.8),所以做如下近似:
    t s = ln ⁡ 0.05 + 1 2 ln ⁡ ( 1 − ξ 2 ) ξ ω n ≈ 3.5 ξ ω n ( 0.3 < ξ < 0.8 ) t_{s}=\frac{\ln 0.05+\frac{1}{2} \ln \left(1-\xi^{2}\right)}{\xi \omega_{n}} \approx \frac{3.5}{\xi \omega_{n}} \quad(0.3<\xi<0.8) ts=ξωnln0.05+21ln(1ξ2)ξωn3.5(0.3<ξ<0.8)
    最终,得:
    t s = 3.5 ξ ω n t_{s}=\frac{3.5}{\xi \omega_{n}} ts=ξωn3.5

(4). 上升时间 t r t_r tr
响应函数表达式:
c ( t ) = 1 − e − ξ ω n t 1 − ξ 2 sin ⁡ ( 1 − ξ 2 ω n t + β ) c(t)=1-\frac{e^{-\xi \omega_n t}}{\sqrt{1-\xi^{2}}} \sin \left(\sqrt{1-\xi^{2}} \omega_{n} t+\beta\right) c(t)=11ξ2 eξωntsin(1ξ2 ωnt+β)
根据上升时间定义 c ( t r ) = 1 c(t_r)=1 c(tr)=1,有如下方程:
e − ξ ω n t r 1 − ξ 2 sin ⁡ ( 1 − ξ 2 ω n t r + β ) = 0 1 − ξ 2 ω n t r + β = π \frac{e^{-\xi \omega_n t_r}}{\sqrt{1-\xi^{2}}} \sin \left(\sqrt{1-\xi^{2}} \omega_{n} t_r+\beta\right)=0\\ \sqrt{1-\xi^{2}} \omega_{n} t_r+\beta=\pi\\ 1ξ2 eξωntrsin(1ξ2 ωntr+β)=01ξ2 ωntr+β=π
解方程得:
t r = π − β 1 − ξ 2 ω n t_r=\frac{\pi-\beta}{\sqrt{1-\xi^{2}} \omega_{n}} tr=1ξ2 ωnπβ


  1. 系统讲解从傅里叶变换到拉普拉斯 ↩︎

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值