06_线性系统的时域分析与校正

时域分析法概述

时域法的作用和特点

  • 直接在时间域中对系统进行分析校正,直观、准确;
  • 可以提供系统时间响应的全部信息;
  • 基于求解系统输出的解析解,比较烦琐。

时域法常用的典型输入信号

在这里插入图片描述

线性系统时域性能指标

三大要求

  • 稳(基本要求)
  • 准(稳态要求)
  • 快(动态要求)

性能指标

  • 延迟时间 t d t_d td: 阶跃响应第一次达到终值的50%所需的时间
  • 上升时间 t r t_r tr: 阶跃响应从终值的10%上升到终值的90%所需的时间;有振荡时,可定义为从0到第一次达到终值所需的时间
  • 峰值时间 t p t_p tp: 阶跃响应越过终值值达到第一个峰值所需的时间 计算超调量所需
  • 超调量 σ % \sigma \% σ%: 峰值超出终值的百分比 σ % = h ( t p ) − h ( ∞ ) h ( ∞ ) × 100 % \sigma\%=\frac{h(tp)-h(\infty)}{h(\infty)}\times100\% σ%=h()h(tp)h()×100% 反映系统平稳性能
  • 调节时间 t s t_s ts: 阶跃响应到达并保持在终值5%误差带内所需的最短时间 反映系统响应的迅速程度

一阶系统的时间响应及动态性能

一阶系统 Φ ( s ) \Phi(s) Φ(s)标准形式及 h ( t ) h(t) h(t)

在这里插入图片描述

G ( s ) = K s Φ ( s ) = G ( s ) 1 + G ( s ) = K K + s 令 T = 1 K = 1 T s + 1 T 被称为一阶系统的时间常数 C ( s ) = Φ ( s ) ⋅ R ( s ) = 1 s ( T s + 1 ) = 1 s − 1 s + 1 T h ( t ) = L − 1 [ C ( s ) ] = 1 − e − t T \begin{aligned} G(s)&=\frac{K}{s}\\ \Phi(s)&=\frac{G(s)}{1+G(s)}=\frac{K}{K+s}\\ 令\qquad T&=\frac{1}{K}\\ &=\frac{1}{Ts+1}\qquad T被称为一阶系统的时间常数\\ C(s)&=\Phi(s)·R(s)=\frac{1}{s(Ts+1)}=\frac{1}{s}-\frac{1}{s+\frac{1}{T}}\\ h(t)&=L^{-1}[C(s)]=1-e^{-\frac{t}{T}}\\ \end{aligned} G(s)Φ(s)TC(s)h(t)=sK=1+G(s)G(s)=K+sK=K1=Ts+11T被称为一阶系统的时间常数=Φ(s)R(s)=s(Ts+1)1=s1s+T11=L1[C(s)]=1eTt

  • Φ ( s ) = 1 T s + 1 , h ( t ) = 1 − e − t T \Phi(s)=\frac{1}{Ts+1},h(t)=1-e^{-\frac{t}{T}} Φ(s)=Ts+11h(t)=1eTt即为一阶系统的标准形式

一阶系统的时间响应及动态性能

在这里插入图片描述

h ( t ) = 1 − e − t T 当 t = 0 , h ( 0 ) = 0 初始值 当 t = ∞ , h ( ∞ ) = 1 稳态值 h ( t s ) = 1 − e − t s T = 0.95 e − t s T = 0.05 t s = − T ln ⁡ 0.05 ≈ 3 T \begin{aligned} h(t)&=1-e^{-\frac{t}{T}}\\ 当t&=0,h(0)=0\qquad 初始值\\ 当t&=\infty,h(\infty)=1\qquad 稳态值\\ h(t_s)&=1-e^{-\frac{t_s}{T}}=0.95\\ e^{-\frac{t_s}{T}}&=0.05\\ t_s&=-T\ln{0.05}\approx3T\\ \end{aligned} h(t)tth(ts)eTtsts=1eTt=0,h(0)=0初始值=,h()=1稳态值=1eTts=0.95=0.05=Tln0.053T
在这里插入图片描述

  • 对于一阶系统来说,没有超调量
  • 一般只需要计算调节时间 t s t_s ts
  • t s ≈ 3 T t_s\approx3T ts3T

一阶系统的典型响应

在这里插入图片描述

  • 对一阶线性系统来说,若输入信号之间有微分积分关系,则对应的响应也有对应的微分积分关系

例题:

例1: 系统如图所示,现采用负反馈方式,欲将系统调节时间减小到原来的0.1倍,且保证原放大倍数不变,试确定参数 K o 和 K H K_o和K_H KoKH的值。

在这里插入图片描述

G ( s ) = 10 0.2 s + 1 T = 0.2 K = 10 Φ ( s ) = K o G ( s ) 1 + K H G ( s ) = 10 K o 0.2 s + 1 1 + 10 K H 0.2 s + 1 = 10 K o 0.2 s + 1 + 10 K H = 10 K o 1 + 10 K H 0.2 1 + 10 K H + 1 { 10 K o 1 + 10 K H = 10 0.2 1 + 10 K H = 0.02 { K H = 0.9 K o = 10 \begin{aligned} G(s)&=\frac{10}{0.2s+1}\qquad T=0.2\qquad K=10\\ \Phi(s)&=\frac{K_oG(s)}{1+K_HG(s)}=\frac{\frac{10K_o}{0.2s+1}}{1+\frac{10K_H}{0.2s+1}}=\frac{10K_o}{0.2s+1+10K_H}=\frac{\frac{10K_o}{1+10K_H}}{\frac{0.2}{1+10K_H}+1}\\ &\begin{cases}\frac{10K_o}{1+10K_H}=10\\\frac{0.2}{1+10K_H}=0.02\end{cases}\qquad\begin{cases}K_H=0.9\\K_o=10\end{cases} \end{aligned} G(s)Φ(s)=0.2s+110T=0.2K=10=1+KHG(s)KoG(s)=1+0.2s+110KH0.2s+110Ko=0.2s+1+10KH10Ko=1+10KH0.2+11+10KH10Ko{1+10KH10Ko=101+10KH0.2=0.02{KH=0.9Ko=10

例2: 已知单位反馈系统的单位阶跃响应 h ( t ) = 1 − e − a t h(t)=1-e^{-at} h(t)=1eat, 试求 Φ ( s ) , k ( t ) , G ( s ) \Phi(s),k(t),G(s) Φ(s),k(t),G(s)

在这里插入图片描述

k ( t ) = h ′ ( t ) = [ 1 − e − a t ] ′ = a e − a t Φ ( s ) = L [ k ( t ) ] = a s + a Φ ( s ) = G ( s ) 1 + G ( s ) G ( s ) = Φ ( s ) 1 − Φ ( s ) = a s \begin{aligned} k(t)&=h'(t)=[1-e^{-at}]'=ae^{-at}\\ \Phi(s)&=L[k(t)]=\frac{a}{s+a}\\ \Phi(s)&=\frac{G(s)}{1+G(s)}\\ G(s)&=\frac{\Phi(s)}{1-\Phi(s)}=\frac{a}{s}\\ \end{aligned} k(t)Φ(s)Φ(s)G(s)=h(t)=[1eat]=aeat=L[k(t)]=s+aa=1+G(s)G(s)=1Φ(s)Φ(s)=sa

  • 对单位阶跃响应来说: L [ h ( t ) ] = H ( s ) = Φ ( s ) ⋅ L [ 1 ( t ) ] = Φ ( s ) s L[h(t)]=H(s)=\Phi(s)·L[1(t)]=\frac{\Phi(s)}{s} L[h(t)]=H(s)=Φ(s)L[1(t)]=sΦ(s)
  • 对脉冲响应来说: L [ k ( t ) ] = K ( s ) = Φ ( s ) ⋅ L [ δ ( t ) ] = Φ ( s ) L[k(t)]=K(s)=\Phi(s)·L[\delta(t)]=\Phi(s) L[k(t)]=K(s)=Φ(s)L[δ(t)]=Φ(s)
  • 以上两种关系基于 C ( s ) = Φ ( s ) R ( s ) C(s)=\Phi(s)R(s) C(s)=Φ(s)R(s)

二阶系统的动态性能

传递函数标准形式及分类

典型结构

G ( s ) = w n 2 s ( s + 2 ξ w n ) K = w n 2 ξ Φ ( s ) = G ( s ) 1 + G ( s ) = w n 2 s 2 + 2 ξ w n s + w n 2 ξ 阻尼比 w n 无阻尼自然频率 \begin{aligned} G(s)&=\frac{w_n^2}{s(s+2\xi w_n)} \qquad K=\frac{w_n}{2\xi}\\ \Phi(s)&=\frac{G(s)}{1+G(s)}=\frac{w_n^2}{s^2+2\xi w_ns+w_n^2}\\ \xi&\quad阻尼比\qquad\quad w_n\quad无阻尼自然频率 \end{aligned} G(s)Φ(s)ξ=s(s+2ξwn)wn2K=2ξwn=1+G(s)G(s)=s2+2ξwns+wn2wn2阻尼比wn无阻尼自然频率

二阶系统分类 D ( s ) = s 2 + 2 ξ w n s + w n 2 = 0 D(s)=s^2+2\xi w_ns+w_n^2=0 D(s)=s2+2ξwns+wn2=0

在这里插入图片描述

ξ = 0 0 阻尼 λ 1 , 2 = ± j w 0 < ξ < 1 欠阻尼 λ 1 , 2 = − ξ w n ± j 1 − ξ 2 w n ξ = 1 临界阻尼 λ 1 = λ 2 = − w n ξ > 过阻尼 λ 1 , 2 = − ξ w n ± j ξ 2 − 1 w n \begin{aligned} \xi&=0\qquad0阻尼\qquad \lambda_{1,2}=\pm jw\\ 0&<\xi<1\qquad欠阻尼\qquad \lambda_{1,2}=-\xi w_n\pm j\sqrt{1-\xi^2}w_n\\ \xi&=1\qquad临界阻尼\qquad \lambda_1=\lambda_2=-w_n\\ \xi&>\qquad过阻尼\qquad \lambda_{1,2}=-\xi w_n\pm j\sqrt{\xi^2-1}w_n\\ \end{aligned} ξ0ξξ=00阻尼λ1,2=±jw<ξ<1欠阻尼λ1,2=ξwn±j1ξ2 wn=1临界阻尼λ1=λ2=wn>过阻尼λ1,2=ξwn±jξ21 wn
在这里插入图片描述

二阶系统动态系统的计算( ξ > = 1 \xi>=1 ξ>=1)

Φ ( s ) = w n 2 s 2 + 2 ξ w n s + w n 2 二阶系统典型结构 λ 1 = − ξ w n + ξ 2 − 1 w n , λ 2 = − ξ w n − ξ 2 − 1 w n , 1 ≤ ξ 令 λ 1 = − 1 T 1 , λ 2 = − 1 T 2 Φ ( s ) = w n 2 ( s + 1 T 1 ) ( s + 1 T 2 ) 解得 h ( t ) = 1 + 1 T 2 / T 1 − 1 e − 1 T 1 t + 1 T 1 / T 2 − 1 e − 1 T 2 t h ( t s ) = 1 + 1 T 2 / T 1 − 1 e − 1 T 1 t s + 1 T 1 / T 2 − 1 e − 1 T 2 t s = 0.95 t s T 1 = f 2 ( T 1 / T 2 ) = f ( ξ ) \begin{aligned} \Phi(s)&=\frac{w_n^2}{s^2+2\xi w_ns+w_n^2}\qquad 二阶系统典型结构\\ \lambda_1&=-\xi w_n+\sqrt{\xi^2-1}w_n,\quad\lambda_2=-\xi w_n-\sqrt{\xi^2-1}w_n,\quad 1\le\xi\\ 令\quad\lambda_1&=\frac{-1}{T_1},\quad\lambda_2=\frac{-1}{T_2}\\ \Phi(s)&=\frac{w_n^2}{(s+\frac{1}{T_1})(s+\frac{1}{T_2})}\\ 解得\quad h(t)&=1+\frac{1}{T_2/T_1-1}e^{-\frac{1}{T_1}t}+\frac{1}{T1/T_2-1}e^{-\frac{1}{T_2}t}\\ h(t_s)&=1+\frac{1}{T_2/T_1-1}e^{-\frac{1}{T_1}t_s}+\frac{1}{T1/T_2-1}e^{-\frac{1}{T_2}t_s}=0.95\\ \frac{t_s}{T_1}&=f_2(T_1/T_2)=f(\xi)\\ \end{aligned} Φ(s)λ1λ1Φ(s)解得h(t)h(ts)T1ts=s2+2ξwns+wn2wn2二阶系统典型结构=ξwn+ξ21 wn,λ2=ξwnξ21 wn,1ξ=T11,λ2=T21=(s+T11)(s+T21)wn2=1+T2/T111eT11t+T1/T211eT21t=1+T2/T111eT11ts+T1/T211eT21ts=0.95=f2(T1/T2)=f(ξ)

  • 上面的式子说明 t s / T 1 t_s/T_1 ts/T1是一个关于 T 1 / T 2 T_1/T_2 T1/T2的函数(也是关于 ξ \xi ξ的 函数)
  • 取离虚轴近的为 λ 1 \lambda_1 λ1

在这里插入图片描述

  • 要计算 t s t_s ts,则先计算出 T 1 、 T 2 T_1、T_2 T1T2, 在通过查表求出 t s T 1 \frac{t_s}{T_1} T1ts, 最后求出 t s t_s ts
  • 下面举例说明

例3 系统结构图如下,开环增益K=0.09, 求系统的动态指标

在这里插入图片描述

  • 求出 T 1 、 T 2 T_1、T_2 T1T2

G ( s ) = 0.09 s ( s + 1 ) Φ ( s ) = G ( S ) 1 + G ( s ) = 0.09 s 2 + s + 0.09 = 0.09 ( s + 0.1 ) ( s + 0.9 ) w n = 0.3 ξ = 1 2 × 0.3 λ 1 = − 0.1 λ 2 = − 0.9 T 1 = 10 T 2 = 1.11 T 1 T 2 = λ 2 λ 1 = 9 \begin{aligned} G(s)&=\frac{0.09}{s(s+1)}\\ \Phi(s)&=\frac{G(S)}{1+G(s)}=\frac{0.09}{s^2+s+0.09}=\frac{0.09}{(s+0.1)(s+0.9)}\\ w_n&=0.3\qquad\xi=\frac{1}{2\times0.3}\\ \lambda_1&=-0.1\quad\lambda_2=-0.9\\ T_1&=10\quad T_2=1.11\\ \frac{T_1}{T_2}&=\frac{\lambda_2}{\lambda_1}=9\\ \end{aligned} G(s)Φ(s)wnλ1T1T2T1=s(s+1)0.09=1+G(s)G(S)=s2+s+0.090.09=(s+0.1)(s+0.9)0.09=0.3ξ=2×0.31=0.1λ2=0.9=10T2=1.11=λ1λ2=9

  • 查表求 t s t_s ts

在这里插入图片描述

t s T 1 ≈ 3.1 t s = t s T 1 ⋅ T 1 = 3.1 × 10 = 31 t p = ∞ 单调递增无峰值 σ % = 0 \begin{aligned} \frac{t_s}{T_1}&\approx3.1\\ t_s&=\frac{t_s}{T_1}·T_1=3.1\times10=31\\ t_p&=\infty\qquad单调递增无峰值\\ \sigma\%&=0 \end{aligned} T1tststpσ%3.1=T1tsT1=3.1×10=31=单调递增无峰值=0

二阶系统特征根对系统的作用大小与离虚轴距离的关系

在这里插入图片描述
在这里插入图片描述

  • c 1 ( t ) c_1(t) c1(t)基本与阶跃信号 r ( t ) r(t) r(t)近似, 且 λ 2 \lambda_2 λ2离虚轴越远, c 1 ( t ) c_1(t) c1(t)越接近于 r ( t ) r(t) r(t)

  • c 2 ( t ) c_2(t) c2(t)蓝线输入信号为阶跃信号 r ( t ) r(t) r(t),黑线输入信号为 c 1 ( t ) c_1(t) c1(t), 可以看到两者(蓝线与黑线)非常接近(但蓝线与输入信号r(t)相差大),且 λ 2 \lambda_2 λ2离虚轴越远,蓝线和黑线越接近。

  • 结论:离虚轴远的特征根,对系统的影响程度更低

参考资料

【(新版!最清晰!去噪不炸耳!)自动控制原理 西北工业大学 卢京潮】

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值