自动控制理论(2):时域分析与校正

自动控制理论(2):时域分析与校正

时域分析法在时间域内研究系统在典型输入信号作用下,其输出响应随时间变化规律的方法。

 

典型输入信号:

单位脉冲信号:

δ ( t ) = { 0 , t ≠ 0 ∞ , t = 0 ∫ − ∞ ∞ δ ( t ) d t = 1 \delta(t)=\left\{\begin{array}{l} 0, t \neq 0 \\\\ \infty, t=0 \end{array} \quad\quad\quad \int_{-\infty}^{\infty} \delta(t) d t=1\right. δ(t)=0,t=0,t=0δ(t)dt=1

拉氏变换为:
R ( s ) = 1 R(s)=1 R(s)=1
单位脉冲信号的积分为单位阶跃信号

 

单位阶跃信号

1 ( t ) = { 0 , t < 0 1 , t ≥ 0 1(t)=\left\{\begin{array}{l} 0, t<0 \\\\ 1, t \geq 0 \end{array}\right. 1(t)=0,t<01,t0

拉氏变换为
R ( s ) = 1 s R(s)=\frac{1}{s} R(s)=s1
单位阶跃信号的积分为单位斜坡信号

 

单位斜坡(速度)信号

r ( t ) = { 0 , t < 0 t , t ≥ 0 r(t)=\left\{\begin{array}{l} 0, t<0 \\\\ t, t \geq 0 \end{array}\right. r(t)=0,t<0t,t0

拉氏变换
R ( s ) = 1 s 2 R(s)=\frac{1}{s^{2}} R(s)=s21
单位斜坡信号的积分为单位加速度信号

 

单位加速度(抛物线)信号

r ( t ) = { 0 , t < 0 1 2 t 2 , t ≥ 0 r(t)=\left\{\begin{array}{l} 0, t<0 \\\\ \frac{1}{2} t^{2}, t \geq 0 \end{array}\right. r(t)=0,t<021t2,t0

拉氏变换为
R ( s ) = 1 s 3 R(s)=\frac{1}{s^{3}} R(s)=s31
 

正弦信号

r ( t ) = { A sin ⁡ ( ω t ) , t ≥ 0 0 , t < 0 r(t)=\left\{\begin{array}{l} A \sin (\omega t), t \geq 0 \\\\ 0, t<0 \end{array}\right. r(t)=Asin(ωt),t00,t<0

拉氏变换为
R ( s ) = A ω s 2 + ω 2 R(s)=\frac{A \omega}{s^{2}+\omega^{2}} R(s)=s2+ω2Aω
 

动态性能指标

延迟时间 t d t_d td:阶跃响应第一次达到终值的50%所需的时间

上升时间 t r t_r tr:阶跃响应从终值的10%上升到终值的90%所需的时间。有振荡时,可定义为从0到第一次达到终值所需的时间

峰值时间 t p t_p tp:阶跃响应越过终值达到第一个峰值所需的时间

超调量 σ \sigma σ:峰值超出终值的百分比,即响应的最大偏离量 h ( t p ) h(t_p) h(tp)与稳态值 h ( ∞ ) h(∞) h()之差的百分比
σ = h ( t p ) − h ( ∞ ) h ( ∞ ) × 100 % \sigma=\frac{h\left(t_{p}\right)-h(\infty)}{h(\infty)} \times 100 \% σ=h()h(tp)h()×100%
调节时间 t s t_s ts:阶跃响应到达并保持在终值误差带内所需的最短时间

 

指标如下图所示:

 

一阶系统的时间响应及动态性能

下图是标准形式一阶系统结构图

开环传递函数
G ( s ) H ( s ) = 1 T s G(s)H(s)=\frac{1}{Ts} G(s)H(s)=Ts1
开环增益为 K = 1 T K=\frac{1}{T} K=T1 T T T称为时间常数

 

闭环传递函数为
Φ ( s ) = 1 T s 1 + 1 T s = 1 T s + 1 = K s 1 + K s = K s + K \Phi(s)=\frac{\frac{1}{Ts}}{1+\frac{1}{Ts}}=\frac{1}{T s+1}=\frac{\frac{K}{s}}{1+\frac{K}{s}}=\frac{K}{s+K} Φ(s)=1+Ts1Ts1=Ts+11=1+sKsK=s+KK
闭环增益为1

 

闭环传递函数的特征根为 λ 1 = − 1 T \lambda_1 = -\frac{1}{T} λ1=T1

 

求其单位阶跃响应

首先求输出的拉氏变换
C ( s ) = Φ ( s ) ⋅ R ( s ) = 1 T s + 1 ⋅ 1 s = 1 s − 1 s + 1 / T C(s)=\Phi(s) \cdot R(s)=\frac{1}{T s+1} \cdot \frac{1}{s}=\frac{1}{s}-\frac{1}{s+1 / T} C(s)=Φ(s)R(s)=Ts+11s1=s1s+1/T1
将其反变换,得到单位阶跃响应
h ( t ) = L − 1 [ C ( s ) ] = 1 − e − t T h(t)=L^{-1}[C(s)]=1-e^{-\frac{t}{T}} h(t)=L1[C(s)]=1eTt
可以计算出其导数
h ′ ( t ) = 1 T e − 1 T t h^{\prime}(t)=\frac{1}{T} e^{-\frac{1}{T} t} h(t)=T1eT1t
计算出其初始输出,初始斜率,以及时间趋于无穷的时候的输出
{ h ( 0 ) = 0 h ( ∞ ) = 1 h ′ ( 0 ) = 1 / T \left\{\begin{array}{l} h(0)=0 \\ h(\infty)=1 \\ h^{\prime}(0)=1 / T \end{array}\right. h(0)=0h()=1h(0)=1/T
一阶系统的单位阶跃响应如下图所示

无超调,无调节时间

假定定义误差带为5%,则调节时间 t s t_s ts,可以由以下方程解出
h ( t s ) = 1 − e − t s T = 0.95 h\left(t_{s}\right)=1-e^{-\frac{t_{s}}{T}}=0.95 h(ts)=1eTts=0.95
解得
t s = − T ln ⁡ 0.05 = 3 T t_{s}=-T \ln 0.05=3 T ts=Tln0.05=3T
得到单位阶跃响应之后,根据线性定常系统对输入信号的积分的响应是输出信号的积分,对输入信号的微分的响应是输出信号的微分的特性,可以直接求出单位脉冲响应和单位斜坡响应、单位加速度响应,无需再次通过拉氏变换、反变换的方法求解

 

二阶系统的时间响应及动态性能

如下是标准形式的二阶系统结构图

开环传递函数为
G ( s ) H ( s ) = ω n 2 s ( s + 2 ξ ω n ) G(s)H(s)=\frac{\omega_{n}^{2}}{s(s+2 \xi\omega_{n})} G(s)H(s)=s(s+2ξωn)ωn2
闭环传递函数为
Φ ( s ) = C ( s ) R ( s ) = ω n 2 s 2 + 2 ξ ω n s + ω n 2 \Phi(s)=\frac{C(s)}{R(s)}=\frac{\omega_{n}^{2}}{s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}} Φ(s)=R(s)C(s)=s2+2ξωns+ωn2ωn2
其中 ξ \xi ξ称为阻尼比, ω n \omega_n ωn称为无阻尼自振荡频率

(注:一阶系统分析的时候,经常将传递函数写为尾1标准型,而二阶系统分析时,将传递函数写为首1标准型)

 

系统的特征方程为
D ( s ) = s 2 + 2 ξ ω n s + ω n 2 = 0 D(s)=s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}=0 D(s)=s2+2ξωns+ωn2=0
求解该特征方程即可求解处二阶系统闭环传递函数的极点

  1. ξ = 0 \xi=0 ξ=0时,称为0阻尼, λ 1 , 2 = ± j ω n \lambda_{1,2}=\pm j\omega_n λ1,2=±jωn

  2. 0 < ξ < 1 0 < \xi <1 0<ξ<1,称为欠阻尼, λ 1 , 2 = − ξ ω n ± j 1 − ξ 2 ω n \lambda_{1,2}=-\xi\omega_{n} \pm \mathbf{j} \sqrt{1-\xi^{2}}\omega_{n} λ1,2=ξωn±j1ξ2 ωn

  3. ξ = 1 \xi = 1 ξ=1,称临界阻尼, λ 1 = λ 2 = − ω n \lambda_{1}=\lambda_{2}=-\omega_{\mathrm{n}} λ1=λ2=ωn

  4. ξ > 1 \xi > 1 ξ>1,称过阻尼, λ 1 , 2 = − ξ ω n ± ξ 2 − 1 ω n \lambda_{1,2}=-\xi \omega_{n} \pm \sqrt{\xi^{2}-1} \omega_{n} λ1,2=ξωn±ξ21 ωn

  5. − 1 < ξ < 0 -1 <\xi < 0 1<ξ<0

  6. ξ < − 1 \xi<-1 ξ<1

不同的极点分布对应的响应曲线如下图所示

 

 

一个二阶过阻尼或临界阻尼的二阶系统,具有两个负实极点。单位阶跃响应的拉氏变换特征根有0、 λ 1 , 2 \lambda_{1,2} λ1,2,对应的模态是1和两个指数收敛项,因此单位阶跃响应指数收敛至常值1。而且特征根 λ i \lambda_i λi对应的模态为 e λ i t e^{\lambda_i t} eλit。因此,特征根距离虚轴越远,即 λ i \lambda_i λi越小,则指数衰减得越快,收敛得越快。因此可知,对系统快速性起主要影响的是距离虚轴较近的极点,称为主导极点。

 

一个欠阻尼或零阻尼的二阶系统,极点为 λ 1 , 2 = − ξ ω n ± j 1 − ξ 2 ω n \lambda_{1,2}=-\xi\omega_{n} \pm \mathbf{j} \sqrt{1-\xi^{2}}\omega_{n} λ1,2=ξωn±j1ξ2 ωn,极点中有虚部。因此其单位阶跃响应的拉氏变换特征根有0和 λ 1 , 2 \lambda_{1,2} λ1,2,对应的模态是1和两个指数衰减的正弦函数项(零阻尼不衰减)。因此单位阶跃响应存在振荡,零阻尼二阶系统的单位阶跃响应不收敛。

将极点绘制在复平面上,如下图所示(仅绘出上半平面,下半平面共轭可得)

 

由上图可得 ∣ λ ∣ = ω n |\lambda|=\omega_{n} λ=ωn λ \lambda λ与负实轴的夹角为 β \beta β
{ cos ⁡ β = ξ sin ⁡ β = 1 − ξ 2 \left\{\begin{array}{l} \cos \beta=\xi \\ \sin \beta=\sqrt{1-\xi^{2}} \end{array}\right. {cosβ=ξsinβ=1ξ2
当该系统输入一个单位阶跃信号时
C ( s ) = Φ ( s ) R ( s ) = ω n 2 s 2 + 2 ξ ω n s + ω n 2 ⋅ 1 s = [ s 2 + 2 ξ ω n s + ω n 2 ] − s ( s + 2 ξ ω n ) s ( s 2 + 2 ξ ω n s + ω n 2 ) = 1 s − s + 2 ξ ω n ( s + ξ ω n ) 2 + ( 1 − ξ 2 ) ω n 2 = 1 s − s + ξ ω n ( s + ξ ω n ) 2 + ( 1 − ξ 2 ) ω n 2 − ξ 1 − ξ 2 ⋅ 1 − ξ 2 ω n ( s + ξ ω n ) 2 + ( 1 − ξ 2 ) ω n 2 \begin{gathered} C(s)=\Phi(s) R(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}} \cdot \frac{1}{s} \\ =\frac{\left[s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}\right]-s\left(s+2 \xi \omega_{n}\right)}{s\left(s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}\right)} \\ =\frac{1}{s}-\frac{s+2 \xi \omega_{n}}{\left(s+\xi \omega_{n}\right)^{2}+\left(1-\xi^{2}\right) \omega_{n}^{2}}\\ =\frac{1}{s}-\frac{s+\xi \omega_{n}}{\left(s+\xi \omega_{n}\right)^{2}+\left(1-\xi^{2}\right) \omega_{n}^{2}}-\frac{\xi}{\sqrt{1-\xi^{2}}} \cdot \frac{\sqrt{1-\xi^{2}} \omega_{n}}{\left(s+\xi \omega_{n}\right)^{2}+\left(1-\xi^{2}\right) \omega_{n}^{2}} \end{gathered} C(s)=Φ(s)R(s)=s2+2ξωns+ωn2ωn2s1=s(s2+2ξωns+ωn2)[s2+2ξωns+ωn2]s(s+2ξωn)=s1(s+ξωn)2+(1ξ2)ωn2s+2ξωn=s1(s+ξωn)2+(1ξ2)ωn2s+ξωn1ξ2 ξ(s+ξωn)2+(1ξ2)ωn21ξ2 ωn
对其进行拉氏反变换
h ( t ) = 1 − e − ξ ω n t cos ⁡ 1 − ξ 2 ω n t − ξ 1 − ξ 2 e − ξ ω n t sin ⁡ 1 − ξ 2 ω n t = 1 − e − ξ ω n t 1 − ξ 2 [ 1 − ξ 2 cos ⁡ 1 − ξ 2 ω n t + ξ sin ⁡ 1 − ξ 2 ω n t ] = 1 − e − ξ ω n t 1 − ξ 2 [ sin ⁡ β ⋅ cos ⁡ 1 − ξ 2 ω n t + cos ⁡ β ⋅ sin ⁡ 1 − ξ 2 ω n t ] = 1 − e − ξ ω n t 1 − ξ 2 sin ⁡ ( 1 − ξ 2 ω n t + β ) \begin{aligned} h(t) &=1-e^{-\xi \omega_{n} t} \cos \sqrt{1-\xi^{2}} \omega_{n} t-\frac{\xi}{\sqrt{1-\xi^{2}}} e^{-\xi \omega_{n} t} \sin \sqrt{1-\xi^{2}} \omega_{n} t \\ &=1-\frac{e^{-\xi \omega_{n} t}}{\sqrt{1-\xi^{2}}}\left[\sqrt{1-\xi^{2}} \cos \sqrt{1-\xi^{2}} \omega_{n} t+\xi \sin \sqrt{1-\xi^{2}} \omega_{n} t\right] \\ &=1-\frac{e^{-\xi \omega_{n} t}}{\sqrt{1-\xi^{2}}}\left[\sin \beta \cdot \cos \sqrt{1-\xi^{2}} \omega_{n} t+\cos \beta \cdot \sin \sqrt{1-\xi^{2}} \omega_{n} t\right]\\ &=1-\frac{e^{-\xi \omega_{n} t}}{\sqrt{1-\xi^{2}}} \sin \left(\sqrt{1-\xi^{2}} \omega_{n} t+\beta\right) \end{aligned} h(t)=1eξωntcos1ξ2 ωnt1ξ2 ξeξωntsin1ξ2 ωnt=11ξ2 eξωnt[1ξ2 cos1ξ2 ωnt+ξsin1ξ2 ωnt]=11ξ2 eξωnt[sinβcos1ξ2 ωnt+cosβsin1ξ2 ωnt]=11ξ2 eξωntsin(1ξ2 ωnt+β)
如果是零阻尼,则无指数衰减,仅仅只是一个以1为中心的正弦信号, β = 90 ° \beta=90° β=90° σ = 100 % \sigma=100\% σ=100% t s = ∞ t_s=\infty ts=

如果是欠阻尼二阶系统,

求峰值时间,即求其阶跃响应的导数第一次为0的位置:
k ( t ) = h ′ ( t ) = L − 1 [ Φ ( s ) ] = L − 1 [ ω n 2 s 2 + 2 ξ ω n s + ω n 2 ] = L − 1 [ ω n 1 − ξ 2 ⋅ 1 − ξ 2 ω n ( s + ξ ω n ) 2 + ( 1 − ξ 2 ) ω n 2 ] = ω n 1 − ξ 2 e − ξ ω n t sin ⁡ 1 − ξ 2 ω n t \begin{aligned} k(t)=h^{\prime}(t) &=L^{-1}[\Phi(s)]=L^{-1}\left[\frac{\omega_{n}^{2}}{s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}}\right] \\ &=L^{-1}\left[\frac{\omega_{n}}{\sqrt{1-\xi^{2}}} \cdot \frac{\sqrt{1-\xi^{2}} \omega_{n}}{\left(s+\xi \omega_{n}\right)^{2}+\left(1-\xi^{2}\right) \omega_{n}^{2}}\right] \\ &=\frac{\omega_{n}}{\sqrt{1-\xi^{2}}} e^{-\xi \omega_{n} t} \sin \sqrt{1-\xi^{2}} \omega_{n} t \end{aligned} k(t)=h(t)=L1[Φ(s)]=L1[s2+2ξωns+ωn2ωn2]=L1[1ξ2 ωn(s+ξωn)2+(1ξ2)ωn21ξ2 ωn]=1ξ2 ωneξωntsin1ξ2 ωnt
峰值位置即 sin ⁡ 1 − ξ 2 ω n t \sin \sqrt{1-\xi^{2}} \omega_{n} t sin1ξ2 ωnt第一次为0的位置,即 1 − ξ 2 ω n t = π \sqrt{1-\xi^{2}} \omega_{n} t = \pi 1ξ2 ωnt=π,因此极点的虚部值为 ω d = ω n 1 − ξ 2 \omega_{d}=\omega_{n} \sqrt{1-\xi^{2}} ωd=ωn1ξ2
t p = π ω d = π ω n 1 − ξ 2 t_{p}=\frac{\pi}{\omega_{d}}=\frac{\pi}{\omega_{n} \sqrt{1-\xi^{2}}} tp=ωdπ=ωn1ξ2 π
峰值时间即π除以根的虚部

 

将峰值时间带入,计算超调量
h ( t p ) = 1 − e − ξ ω n t p 1 − ξ 2 sin ⁡ ( 1 − ξ 2 ω n t p + β ) = 1 − e − ξ π / 1 − ξ 2 1 − ξ 2 sin ⁡ ( π + β ) = 1 + e − ξ π / 1 − ξ 2 \begin{aligned} h\left(t_{p}\right) &=1-\frac{e^{-\xi \omega_{n} t_{p}}}{\sqrt{1-\xi^{2}}} \sin \left(\sqrt{1-\xi^{2}} \omega_{n} t_{p}+\beta\right) \\ &=1-\frac{e^{-\xi \pi / \sqrt{1-\xi^{2}}}}{\sqrt{1-\xi^{2}}} \sin (\pi+\beta) \\ &=1+e^{-\xi \pi / \sqrt{1-\xi^{2}}} \end{aligned} h(tp)=11ξ2 eξωntpsin(1ξ2 ωntp+β)=11ξ2 eξπ/1ξ2 sin(π+β)=1+eξπ/1ξ2
由此
σ % = h ( t p ) − h ( ∞ ) h ( ∞ ) × 100 % = e − ξ π 1 − ξ 2 × 100 % \sigma \%=\frac{h\left(t_{p}\right)-h(\infty)}{h(\infty)} \times 100 \%=e^{-\frac{\xi \pi}{\sqrt{1-\xi^{2}}}} \times 100 \% σ%=h()h(tp)h()×100%=e1ξ2 ξπ×100%
超调量只和阻尼比 ξ \xi ξ有关和极点的 β \beta β有关,和 ω n \omega_n ωn无关,分布在同一条射线上的极点对应的超调量都是一样的。超调量的指数 − ξ π 1 − ξ 2 -\frac{\xi \pi}{\sqrt{1-\xi^{2}}} 1ξ2 ξπ即为极点的实部比虚部。

 

由于不同阻尼比带来的振荡幅度不一样大,导致依照调节时间的定义去计算时,会出现当阻尼比由小到大连续变化时,震荡幅度逐渐减小,到某一个值时,会出现整个振荡都没有超过误差带范围的情况,导致调节时间变化不连续。如下图所示,黑线的振荡刚好没有超过5%的误差带

如果依照精确的调节时间的定义,计算出的调节时间和阻尼比的关系如下图所示

因此在这种情况下,精确地讨论调节时间意义不大。二阶系统的调节时间工程上可以通过振荡衰减的包络线进入误差带的时间计算得出。可以根据如下公式取近似(公式中的分母是特征根的实部)

当误差带取2%,即 Δ = 0.02 \Delta=0.02 Δ=0.02
t s ≈ 4 ξ ω n t_{s} \approx \frac{4}{\xi \omega_{n}} tsξωn4
当误差带取5%,即 Δ = 0.05 \Delta=0.05 Δ=0.05
t s ≈ 3 ξ ω n t_{s} \approx \frac{3}{\xi \omega_{n}} tsξωn3
由于当阻尼比 ξ = 0.707 \xi = 0.707 ξ=0.707时,进入5%误差带的时间最短,因此将0.707定义为最佳阻尼比(“最佳”二字仅表示调节时间最短,具体实际阻尼比设计根据实际情况定)

 

欠阻尼二阶系统的极点在复平面移动对单位阶跃响应动态性能指标的影响:

  1. 根据直角坐标

    欠阻尼二阶系统的单位阶跃响应的振荡来自于极点的虚部,因此虚部相同,单位阶跃响应的振荡频率是一样的;虚部越大,单位阶跃响应的振荡频率越大,峰值时间越短。

    欠阻尼二阶系统的单位阶跃响应的衰减来自于极点的实部,因此实部相同,单位阶跃响应的包络线衰减是一样的;实部绝对值越大(离虚轴越远),衰减越快。调节时间是根据包络线进入误差带的时间定义的,所以和振荡情况无关,不随虚部变化而变化,极点离虚轴越远,衰减越快,调节时间越小。

    在实部相同的情况下,虚部增大,意味着振荡频率增加,即意味着更早到达第一个峰值,由于衰减包络线相同,所以更早到达的峰值,值更大,所以实部相同,虚部越大,超调量越大。当 β \beta β不变,即实部和虚部的比值不变时,超调量不变。(离虚轴越远,会使衰减更快,使超调量减小;离实轴越远,会使振荡更快,更早到达峰值,使超调量更大。当两个作用同步增大或减小时,超调量不变。)

  2. 根据极坐标(本质就是改变 ξ \xi ξ ω n \omega_n ωn带来的影响)

    ξ \xi ξ减小, β \beta β增大(和负实轴的夹角增大),超调量增大,峰值时间增大,调节时间增大

    ω n \omega_n ωn增大(模增大),超调量不变,峰值时间增大,调节时间减小

 

由上述可知,加入极点分布在虚轴右侧, β > 90 ° \beta>90° β>90° ξ < 0 \xi<0 ξ<0,则其对应的模态为指数增大,单位阶跃响应发散,随着实部的增加,发散变快。如果 ξ \xi ξ还在0~-1之间,则特征根依然存在虚部,会振荡发散;如果 ξ ≤ − 1 \xi \le -1 ξ1则无振荡发散。若极点在原点,系统闭环传函变为 1 s 2 \frac{1}{s^2} s21,则变为纯积分,单位阶跃输入,单位加速度输出。

 

二阶系统的时域校正

假设有二阶系统如图所示,假设K=10

则其开环传递函数为
G a ( s ) = K s ( s + 1 ) G_{a}(s)=\frac{K}{s(s+1)} Ga(s)=s(s+1)K
闭环传递函数为
Φ a ( s ) = K s ( s + 1 ) 1 + K s ( s + 1 ) = K s 2 + s + K = 10 s 2 + s + 10 \Phi_{a}(s)=\frac{\frac{K}{s(s+1)}}{1+\frac{K}{s(s+1)}}=\frac{K}{s^2 + s + K}=\frac{10}{s^{2}+s+10} Φa(s)=1+s(s+1)Ks(s+1)K=s2+s+KK=s2+s+1010
可以计算得其 ξ = 0.158 \xi = 0.158 ξ=0.158 ω n = 10 = 3.16 \omega_n=\sqrt{10}=3.16 ωn=10 =3.16,闭环极点为 − 0.5 ± j 3.12 -0.5 \pm j3.12 0.5±j3.12

 

测速反馈结构举例如下

则其开环传递函数变为
G b ( s ) = 10 ( K t s + 1 ) s ( s + 1 ) G_{b}(s)=\frac{10\left(K_{t} s+1\right)}{s(s+1)} Gb(s)=s(s+1)10(Kts+1)
闭环传递函数为
Φ b ( s ) = 10 s 2 + ( 1 + 10 K t ) s + 10 \Phi_{b}(s)=\frac{10}{s^{2}+\left(1+10 K_{t}\right) s+10} Φb(s)=s2+(1+10Kt)s+1010
 

pd校正结构举例如下

则其开环传递函数为
G c ( s ) = 10 ( K t s + 1 ) s ( s + 1 ) G_{c}(s)=\frac{10\left(K_{t} s+1\right)}{s(s+1)} Gc(s)=s(s+1)10(Kts+1)
闭环传递函数为
Φ c ( s ) = 10 ( K t s + 1 ) s 2 + ( 1 + 10 K t ) s + 10 \Phi_{c}(s)=\frac{10\left(K_{t} s+1\right)}{s^{2}+\left(1+10 K_{t}\right) s+10} Φc(s)=s2+(1+10Kt)s+1010(Kts+1)
上图结构中的测速反馈和pd校正使得校正后的闭环传递函数极点相同,为 − 1.58 ± j 2.74 -1.58 \pm \mathrm{j} 2.74 1.58±j2.74,增益相同,pd校正比测速反馈还多了一个闭环传函零点

测速反馈将输出信号的过微分反馈回来(测速),从而达到使原系统的开环传递函数增添了一个一阶微分的作用,进而在闭环传函特征方程中常数项 ω n \omega_n ωn不变的情况下,使其一次项系数 2 ξ ω n 2\xi\omega_n 2ξωn变大,相当于增加阻尼。即使得特征根在模不变的情况下,与负实轴夹角变小了,从而实部增大,衰减变快,调节时间变短;虚部减小,振荡频率减小,峰值时间变长;衰减快而峰值时间边长,超调量减小。

pd校正在让开环传函增添一阶微分作用之外还使得闭环传函增添了一个零点,相当于在例子中测速反馈的基础上,串联了一个一阶微分的作用。如下图所示。

微分作用相位超前,相当于在增加阻尼之外还额外增加了一个提前控制,在串联前一个环节的输出加速上升时提供一个正向的作用,前一个环节输出开始减速时,提供一个负向的作用,帮助收敛。在提前控制的作用下,pd校正后的系统超调量略大于测速反馈的系统,但是峰值时间、调节时间小于测速反馈的系统。不过因为阻尼的增大,超调量依旧比原系统小得多。

原系统、测速反馈、pd校正的单位阶跃响应如下图所示

由此可以得到二阶系统附加闭环负实零点的性质:

(1)仅在过渡过程开始阶段有较大影响

(2)附加合适的闭环负实零点可使系统响应速度加快,但系统的超调量略有增大

(3)负实零点越接近虚轴,加速作用越明显

附加闭环极点相当于串联一个惯性环节,如下图所示

由图可知附加闭环极点可以使系统快速性下降,平稳性提高。

附加闭环极点 σ % \sigma\% σ%下降, t p t_p tp上升

附加闭环零点 σ % \sigma\% σ%上升, t p t_p tp下降

高阶系统的时域分析

分析高阶系统的单位阶跃响应时,如果按照一阶二阶系统的方法精确计算,则过于复杂,将其闭环传递函数零极点在复平面画出之后,可知,如果有零极点距离虚轴过远,则其对应的模态衰减速率很快,对系统动态性能指标影响不大,称其为非主导零极点,可以舍去。在没有舍去的零极点中,如果有一对零极点距离非常近,则其对系统的作用可以视为近似抵消,称其为偶极子,同样可以舍去。最后只保留闭环主导极点。

具体定义如下

(1)如果系统中有一个极点或一对复数极点距虚轴最近,且附近没有闭环零点

(2)其它闭环极点与虚轴的距离都比该极点与虚轴距离大5倍以上。

则此系统的响应可近似地视为由这个 (或这对) 极点所产生。称其为闭环主导极点

可以由闭环主导极点形成的低阶系统估算高阶系统动态性能指标

稳定性分析

在扰动作用下系统偏离了原来的平衡状态,如果扰动消除后,系统能够以足够的准确度恢复到原来的平衡状态,则系统是稳定的;否则,系统不稳定。

因此根据稳定性的定义,若单位脉冲响应在时间趋于无穷时,趋于0,即 lim ⁡ t → ∞ k ( t ) = 0 \lim \limits_{t \to \infty} k(t)=0 tlimk(t)=0,则系统是稳定的

因为单位脉冲信号的拉氏变换为1,单位脉冲响应的拉氏变换即传递函数,因此,需要系统传递函数的特征根对应的模态均能指数衰减。即要求系统的所有闭环极点均具有负的买部,或所有闭环极点均严格位于左半S平面。

但是由于解高阶方程很困难,因此需要一种稳定判据,能够在不求解方程的情况下,也能够判断系统是否稳定。

假定系统的特征方程如下
D ( s ) = a n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 = 0 D(s)=a_{n} s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}=0 D(s)=ansn+an1sn1++a1s+a0=0
首先,因为特征多项式各项的系数,是由各个因式 ( T s + c ) (Ts+c) (Ts+c)的系数以及常数乘积组合相加的结果,当系统稳定时,每一个因式的常数与系数一定都是(可化为)同号的,因此相乘相加会使得绝对值增大,绝无可能是0。所以当特征方程缺项,即某一项系数为0时,系统一定不稳定。

当系统没有缺项时,判断特征方程的各项系数 a n , a n − 1 , ⋯   , a 0 a_n,a_{n-1},\cdots,a_0 an,an1,,a0是否同号,不是的话,系统也不稳定。(理由同上)

如果各项系数既没有缺项,也同号,则需进一步通过劳斯稳定判据来判断是否稳定。

劳斯稳定判据步骤如下:

  1. 将特征方程化为系数全是正数的形式,列劳斯表

    s n s^n sn a n a_{n} an a n − 2 a_{n-2} an2 a n − 4 a_{n-4} an4 a n − 6 a_{n-6} an6 ⋯ \cdots
    s n − 1 s^{n-1} sn1 a n − 1 a_{n-1} an1 a n − 3 a_{n-3} an3 a n − 5 a_{n-5} an5 a n − 7 a_{n-7} an7 ⋯ \cdots
    s n − 2 s^{n-2} sn2 b 1 b_1 b1 b 2 b_2 b2 b 3 b_3 b3 b 4 b_4 b4 ⋯ \cdots
    s n − 3 s^{n-3} sn3 c 1 c_1 c1 c 2 c_2 c2 c 3 c_3 c3 c 4 c_4 c4 ⋯ \cdots
    ⋮ \vdots ⋮ \vdots ⋮ \vdots ⋮ \vdots ⋮ \vdots ⋱ \ddots
    s 2 s^{2} s2 d 1 d_1 d1 d 2 d_2 d2
    s 1 s^{1} s1 e 1 e_1 e1
    s 0 s^{0} s0 f 1 f_1 f1

    其中 a n , a n − 1 , ⋯   , a 0 a_n,a_{n-1},\cdots,a_0 an,an1,,a0是特征多项式中各项的系数

    而下面各行的系数计算,依照如下规则
    b 1 = a n − 1 a n − 2 − a n a n − 3 a n − 1 b 2 = a n − 1 a n − 4 − a n a n − 5 a n − 1 b 3 = a n − 1 a n − 6 − a n a n − 7 a n − 1 \begin{aligned} &b_{1}=\frac{a_{n-1} a_{n-2}-a_{n} a_{n-3}}{a_{n-1}} \\ &b_{2}=\frac{a_{n-1} a_{n-4}-a_{n} a_{n-5}}{a_{n-1}} \\ &b_{3}=\frac{a_{n-1} a_{n-6}-a_{n} a_{n-7}}{a_{n-1}} \end{aligned} b1=an1an1an2anan3b2=an1an1an4anan5b3=an1an1an6anan7

    c 1 = b 1 a n − 3 − a n − 1 b 2 b 1 c 2 = b 1 a n − 5 − a n − 1 b 3 b 1 c 3 = b 1 a n − 7 − a n − 1 b 4 b 1 \begin{aligned} &c_{1}=\frac{b_{1} a_{n-3}-a_{n-1} b_{2}}{b_{1}} \\ &c_{2}=\frac{b_{1} a_{n-5}-a_{n-1} b_{3}}{b_{1}} \\ &c_{3}=\frac{b_{1} a_{n-7}-a_{n-1} b_{4}}{b_{1}} \end{aligned} c1=b1b1an3an1b2c2=b1b1an5an1b3c3=b1b1an7an1b4

    不过由于劳斯判据只与其中第一列元素的符号有关,而将劳斯表中某一行同时乘以一个正数,对劳斯表第一列元素的符号没有影响,因此可以通过将同一行同时乘以一个正数简化计算

  2. 得到劳斯表了之后,判断第一列是否均大于零,如果第一列均大于零,则系统稳定

  3. 如果第一列出现负数,则系统不稳定,且第一列元素符号改变的次数为含有正实部的特征根的个数

  4. 如果第一列出现0,而该行其余项并不全为0,可以通过一个小正数 ϵ \epsilon ϵ代替0来计算劳斯表剩余元素(可用于判断特征方程存在几个含有正实部的特征根)

  5. 当第一列出现0,且该行其余项也全为0,这说明在S平面内存在以原点对称的特征根即可能出现如下情况

    P = ± σ , P = ± j ω , P = ± σ ± j ω \mathrm{P}=\pm \sigma, \quad \mathrm{P}=\pm j \omega, \quad \mathrm{P}=\pm \sigma \pm j \omega P=±σ,P=±jω,P=±σ±jω

    此时,用上一行元素组成辅助方程,将其对s求导,求导之后的结果用于替换该全零行,并继续计算

    (可用于判断特征方程存在几个含有正实部及零实部的特征根)

 

系统闭环稳定与开环稳定之间没有直接关系。

系统的稳定性是其自身的属性, 与输入类型、形式无关。

系统稳定与否,只取决于闭环极点,与闭环零点无关。(零点不改变模态,但是改变模态对应的系数,因此影响动态性能但是不影响稳定性)

如果要求计算如何调整参数使系统稳定则直接待定系数列劳斯表,根据判定方法计算即可

如果要求计算如何调整参数使得系统的闭环极点都落在 s = − c s=-c s=c的左侧,则只需要令 s = s ^ − c s=\hat{s}-c s=s^c,原系统的闭环极点落在 s = − c s=-c s=c的左侧的问题即转化为了用 s ^ \hat{s} s^表示的特征方程,特征根落在 s ^ \hat s s^的左半平面,用劳斯判据即可。

 

系统的稳态性能

稳态误差是系统的稳态性能指标,是对系统控制精度的度量,能反映系统跟踪控制信号的准确度或抑制扰动信号的能力。

对稳定的系统研究稳态误差才有意义,所以计算稳态误差以系统稳定为前提,不稳定的系统没有稳态自然也不存在稳态性能、稳态误差等概念。

通常把在阶跃输入作用下没有原理性稳态误差的系统称为“无差系统”,而把有原理性稳态误差的系统称为“有差系统”

误差的定义:

  1. 按输入端定义的误差(偏差):输入信号-主反馈信号
    e ( t ) = r ( t ) − b ( t ) e(t)=r(t)-b(t) e(t)=r(t)b(t)

    E ( s ) = R ( s ) − H ( s ) C ( s ) E(s)=R(s) - H(s) C(s) E(s)=R(s)H(s)C(s)

  2. 按输出端定义的误差:输出量的希望值-输出量实际值
    e ( t ) = c r ( t ) − c ( t ) e(t)=c_{r}(t)-c(t) e(t)=cr(t)c(t)

    E ′ ( s ) = R ( s ) H ( s ) − C ( s ) E^{\prime}(s)=\frac{R(s)}{H(s)} - C(s) E(s)=H(s)R(s)C(s)

一半按照输入端定义,因为主反馈信号才是我们通过检测元件测得的信号(H为检测环节),实际的输出量并无法得知

当我们研究单位反馈系统(H=1)时,期望输出 c r ( t ) c_r(t) cr(t)即输入 r ( t ) r(t) r(t),输出 c ( t ) c(t) c(t)即主反馈信号 b ( t ) b(t) b(t),根据输入端定义的误差和根据输出端定义的误差一致

 

e ( t ) e(t) e(t)称为误差响应,误差响应中当时间趋于无穷时衰减至0的项称为瞬态分量,剩下的部分为稳态分量

稳态误差指的是稳定系统误差信号的稳态分量
e s s = lim ⁡ t → ∞ e ( t ) e_{s s}=\lim _{t \rightarrow \infty} e(t) ess=tlime(t)
 

如上图所示的系统误差分为由输入引起的误差以及由扰动引起的误差两部分

总误差为
E ( s ) = Φ ε ( s ) R ( s ) + Φ ε n ( s ) N ( s ) E(s)=\Phi_{\varepsilon}(s) R(s)+\Phi_{\varepsilon n}(s) N(s) E(s)=Φε(s)R(s)+Φεn(s)N(s)
偏差响应输入的闭环传递函数为
Φ ε ( s ) = ε ( s ) R ( s ) = 1 1 + G 1 ( s ) G 2 ( s ) H ( s ) \Phi_{\varepsilon}(s)=\frac{\varepsilon(s)}{R(s)}=\frac{1}{1+G_{1}(s) G_{2}(s) H(s)} Φε(s)=R(s)ε(s)=1+G1(s)G2(s)H(s)1
偏差响应扰动的闭环传递函数为
Φ ε n ( s ) = ε ( s ) N ( s ) = − G 2 ( s ) H ( s ) 1 + G 1 ( s ) G 2 ( s ) H ( s ) \Phi_{\varepsilon n}(s)=\frac{\varepsilon(s)}{N(s)}=\frac{-G_{2}(s) H(s)}{1+G_{1}(s) G_{2}(s) H(s)} Φεn(s)=N(s)ε(s)=1+G1(s)G2(s)H(s)G2(s)H(s)

求解稳态误差时,首先求解误差传递函数,然后利用终值定理计算稳态误差
e s s = lim ⁡ s → 0 s [ Φ ε ( s ) R ( s ) + Φ ε n ( s ) N ( s ) ] e_{ss}=\lim _{s \rightarrow 0} s\left[\Phi_{\varepsilon}(s) R(s)+\Phi_{\varepsilon n}(s) N(s)\right] ess=s0lims[Φε(s)R(s)+Φεn(s)N(s)]
由此可以发现,稳态误差不只和系统本身结构有关,还和输入信号以及扰动信号类型有关

分析输入作用下的稳态误差:
输入作用下系统的误差传递函数为
Φ e r ( s ) = 1 1 + G ( s ) H ( s ) \Phi_{e r}(s)=\frac{1}{1+G(s) H(s)} Φer(s)=1+G(s)H(s)1
将系统的开环传递函数写为时间常数形式
G ( s ) H ( s ) = K ( 1 + τ 1   s ) ( 1 + τ 2   s ) ⋯ ( 1 + τ m s ) s v ( 1 + T 1   s ) ( 1 + T 2   s ) ⋯ ( 1 + T n − v s ) = K ∏ j = 1 m ( τ j s + 1 ) s v ∏ i = 1 n − v ( T i s + 1 ) \mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{\mathrm{K}\left(1+\tau_{1} \mathrm{~s}\right)\left(1+\tau_{2} \mathrm{~s}\right) \cdots\left(1+\tau_{\mathrm{m}} \mathrm{s}\right)}{\mathrm{s}^{\mathrm{v}}\left(1+\mathrm{T}_{1} \mathrm{~s}\right)\left(1+\mathrm{T}_{2} \mathrm{~s}\right) \cdots\left(1+\mathrm{T}_{\mathrm{n}-\mathrm{v}} \mathrm{s}\right)}=\frac{\mathrm{K} \prod\limits_{\mathrm{j}=1}^{\mathrm{m}}\left(\tau_{\mathrm{j}} \mathrm{s}+1\right)}{\mathrm{s}^{\mathrm{v}} \prod\limits_{\mathrm{i}=1}^{\mathrm{n}-\mathrm{v}}\left(\mathrm{T}_{\mathrm{i}} \mathrm{s}+1\right)} G(s)H(s)=sv(1+T1 s)(1+T2 s)(1+Tnvs)K(1+τ1 s)(1+τ2 s)(1+τms)=svi=1nv(Tis+1)Kj=1m(τjs+1)
K为开环增益, s ν s^{\nu} sν表示开环传递函数在原点处有 ν \nu ν重极点,或者说有 ν \nu ν个积分环节串联。
e s s = lim ⁡ t → ∞ e ( t ) = lim ⁡ s → 0 s E ( s ) = lim ⁡ s → 0 s R ( s ) 1 + G ( s ) H ( s ) e_{s s}=\lim _{t \rightarrow \infty} e(t)=\lim _{s \rightarrow 0} s E(s)=\lim _{s \rightarrow 0} \frac{s R(s)}{1+G(s) H(s)} ess=tlime(t)=s0limsE(s)=s0lim1+G(s)H(s)sR(s)
= lim ⁡ s → 0 s v ∏ i = 1 n − v ( T i s + 1 ) ⋅ s R ( s ) s v ∏ i = 1 n − v ( T i s + 1 ) + K ∏ j = 1 m ( τ j s + 1 ) = lim ⁡ s → 0 [ s v + 1 R ( s ) ] K + lim ⁡ s → 0 s v = lim ⁡ s → 0 s R ( s ) 1 + lim ⁡ s → 0 K s ν =\lim _{s \rightarrow 0} \frac{s^{v} \prod\limits_{i=1}^{n-v}\left(T_{i} s+1\right) \cdot s R(s)}{s^{v} \prod\limits_{i=1}^{n-v}\left(T_{i} s+1\right)+K \prod\limits_{j=1}^{m}\left(\tau_{j} s+1\right)}=\frac{\lim\limits _{s \rightarrow 0}\left[s^{v+1} R(s)\right]}{K+\lim\limits _{s \rightarrow 0} s^{v}}=\frac{\lim\limits_{s\to0}{sR(s)}}{1+\lim\limits_{s\to0}{\frac{K}{s^\nu}}} =s0limsvi=1nv(Tis+1)+Kj=1m(τjs+1)svi=1nv(Tis+1)sR(s)=K+s0limsvs0lim[sv+1R(s)]=1+s0limsνKs0limsR(s)

ν \nu ν称为系统的型别,为0,1,2,……时,分别称为0型系统,1型系统,2型系统……

分析不同输入情况下的稳态误差

  1. 单位阶跃输入:

    定义稳态位置误差系数 K p K_p Kp
    K p = lim ⁡ s → 0 G ( s ) H ( s ) K_{p}=\lim _{s \rightarrow 0} G(s) H(s) Kp=s0limG(s)H(s)
    0型系统 K p = K K_p=K Kp=K,K为开环放大系数;1型及以上系统 K p = ∞ K_p=\infty Kp=
    e s s = 1 1 + K p e_{s s}=\frac{1}{1+K_{p}} ess=1+Kp1

  2. 单位斜坡输入:

    定义稳态速度误差系数 K v K_v Kv
    K v = lim ⁡ s → 0   s G ( s ) H ( s ) \mathbf{K}_{\mathrm{v}}=\lim _{\mathrm{s} \rightarrow 0} \mathrm{~s} \mathbf{G}(\mathrm{s}) \mathbf{H}(\mathrm{s}) Kv=s0lim sG(s)H(s)
    0型系统 K v = 0 K_v=0 Kv=0;1型系统, K v = K K_v=K Kv=K;2型及以上系统 K v = ∞ K_v=\infty Kv=
    e s s = 1 K v e_{s s}=\frac{1}{K_{v}} ess=Kv1

  3. 单位加速度输入:

    定义稳态加速度误差系数 K a K_a Ka
    K a = lim ⁡ s → 0   s 2 G ( s ) H ( s ) \mathbf{K}_{\mathrm{a}}=\lim _{\mathrm{s} \rightarrow 0} \mathrm{~s}^{2} \mathbf{G}(\mathrm{s}) \mathbf{H}(\mathrm{s}) Ka=s0lim s2G(s)H(s)
    0型系统、1型系统 K a = 0 K_a=0 Ka=0;2型系统, K a = K K_a=K Ka=K;3型及以上系统 K a = ∞ K_a=\infty Ka=
    e s s = 1 K a \mathrm{e}_{\mathrm{ss}}=\frac{1}{\mathbf{K}_{\mathrm{a}}} ess=Ka1

可以得到表格如下

由此,

ν = 1 \nu=1 ν=1时,系统对 R ( s ) = A s R(s)=\frac{\mathrm{A}}{s} R(s)=sA的输入信号可以做到稳态误差为0

ν = 2 \nu=2 ν=2时,系统对 R ( s ) = A s + B s 2 R(s)=\frac{\mathrm{A}}{s}+\frac{\mathrm{B}}{s^{2}} R(s)=sA+s2B的输入信号可以做到稳态误差为0

ν = 3 \nu=3 ν=3时,系统对 R ( s ) = A s + B s 2 + C s 3 R(s)=\frac{\mathrm{A}}{s}+\frac{\mathrm{B}}{s^{2}}+\frac{C}{s^{3}} R(s)=sA+s2B+s3C的输入信号可以做到稳态误差为0

开环传函中串联的积分个数 ν \nu ν,决定了系统对什么程度的输入信号可以做到无差,称该系统对给定输入 r ( t ) r(t) r(t) ν \nu ν阶无差系统, ν \nu ν称为系统的无差度

提高开环增益K或增加型别 ν \nu ν,都可以达到减小或消除系统稳态误差的目的。但这可能给动态性能或稳定性带来问题,一般 ν ≤ 2 \nu \le 2 ν2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值