多视图几何总结——等距变换、相似变换、仿射变换和射影变换

多视图几何总结——等距变换、相似变换、仿射变换和射影变换

多视图几何再2.4节中介绍好几种变换,有时候容易绕懵,这里花点时间简单总结下
首先只管感受下这几种变换
在这里插入图片描述
其中图a是相似变换,其效果是圆仍然是圆,正方形仍然是正方形;图b是仿射变换,其效果是圆变成椭圆,垂线不再垂直;图c是射影变换,其效果是平行线变成汇聚线,下面分别从数学层面介绍这几种变换。

等距变换

在这里插入图片描述
等距变换也就是我们在机器人中所学的刚体变换,其分块形式为
在这里插入图片描述
其中 R R R为旋转矩阵(为正交阵), t t t为平移矢量,在平面等距变换中矩阵一共有三个自由度,旋转一个,平移两个

其变换不变量是:长度、角度和面积


相似变化

在这里插入图片描述
相似变换是等距变换与均匀缩放的复合,其分块形式为:
在这里插入图片描述
观察矩阵形式,其实就是在旋转矩阵上加了一个缩放因子s,其一共有四个自由度,因为比等距变换多了一个自由度

其不变量为:长度的比率、角度和面积的比率


仿射变换

在这里插入图片描述
其分块形式为
在这里插入图片描述
其中A是一个 2 × 2 2×2 2×2的非奇异矩阵,因此仿射变换一共六个自由度,其中比较有意思的是对矩阵 A A A的理解,可以对 A A A进行SVD分解 A = U D V T = ( U V T ) ( V D V T ) = R ( θ ) ( R ( − ϕ ) D R ( ϕ ) ) A=UDV^T=(UV^T)(VDV^T)=R(\theta)(R(-\phi)DR(\phi)) A=UDVT=(UVT)(VDVT)=R(θ)(R(ϕ)DR(ϕ))因此仿射矩阵可以看成一个旋转 ( ϕ ) (\phi) (ϕ),加上在已旋转的 x x x y y y方向分别进行比例因子 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2(分解出来的特征值或者说矩阵 D D D的对角线元素)分别进行按比例缩放,再加上一个回转 ( − ϕ ) (-\phi) (ϕ)和最后一个旋转的符合类型 ( θ ) (\theta) (θ),这在我学矩阵论是遇到SVD分解时就思考过的问题,这里解释得很好,可以参考下图理解
在这里插入图片描述
其不变量为:平行线段的长度比,平行线和面积比(所有面积都缩放 λ 1 λ 2 \lambda_1 \lambda_2 λ1λ2倍)

补充:
仿射变换是保持无穷远线不变形的最一般的线性变换,这句话的意思就是说,例如射影变换是会将无穷远点变成有限点,因此原本平行的直线不再平行,而仿射变换之后平行直线仍然平行,因为其不改变无穷远点的性质


射影变换

在这里插入图片描述
其分块形式为
在这里插入图片描述
仿射变换是非齐次坐标的一般非奇异线性变换和一个平移的符合,其一共具有八个自由度

其不变量为:共点,共线,接触的阶还有长度的比率的比率


总结

这里可以注意下仿射变换和射影变换的区别如下:
仿射变换
在这里插入图片描述
射影变换
在这里插入图片描述
其中 ( x 1 , x 2 . 0 ) T (x_1,x_2.0)^T (x1,x2.0)T是无穷远点(无穷远点的表示方法就是其次坐标最后一位为0),可以发现通过仿射变换无穷远点还是无穷远点,但是通过射影变换可以将无穷远点变换为有限点,正因为如此,射影变换可以完成消除透视失真操作:
在这里插入图片描述
最后铺上一张多视图几何中关于几种变换的总结表:
在这里插入图片描述
有问题欢迎交流指正~

此外,对SLAM算法感兴趣的同学可以看考我的博客SLAM算法总结——经典SLAM算法框架总结

  • 8
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值