超越DeepSeek-R1,英伟达开源新王登顶!14万H100小时训练细节全曝光
现在,英伟达的Llama-Nemotron系列模型已经正式超越了DeepSeek-R1,并且这些模型均已开源。换句话说,新的推理模型在推理吞吐量和内存效率上显著超过了DeepSeek-R1,目前已可用。这一全新系列的模型是如何炼成的呢?英伟达刚发布的技术报告中,揭示了模型训练的关键。
模型训练的关键步骤
根据最新技术报告,Llama-Nemotron系列模型的训练过程包含多个关键环节:
- 合成数据监督微调与强化学习:这一方法全面提升了模型的推理能力。
- 后续训练流程的构建:从头构建一个完善的后训练流程,确保模型优化。
英伟达推出的Llama-Nemotron系列包括三个模型:LN-Nano 8B、LN-Super 49B以及LN-Ultra 253B。值得一提的是,LN-Ultra不仅在性能上超越了DeepSeek-R1,且其可以在单个8xH100节点上高效运行。同时,它在推理吞吐量与上下文长度方面达到了领先的标准。
推理开关功能的创新
Llama-Nem