超越DeepSeek-R1,英伟达开源新王登顶!14万H100小时训练细节全曝光

超越DeepSeek-R1,英伟达开源新王登顶!14万H100小时训练细节全曝光

现在,英伟达的Llama-Nemotron系列模型已经正式超越了DeepSeek-R1,并且这些模型均已开源。换句话说,新的推理模型在推理吞吐量和内存效率上显著超过了DeepSeek-R1,目前已可用。这一全新系列的模型是如何炼成的呢?英伟达刚发布的技术报告中,揭示了模型训练的关键。

innovation

模型训练的关键步骤

根据最新技术报告,Llama-Nemotron系列模型的训练过程包含多个关键环节:

  1. 合成数据监督微调与强化学习:这一方法全面提升了模型的推理能力。
  2. 后续训练流程的构建:从头构建一个完善的后训练流程,确保模型优化。

英伟达推出的Llama-Nemotron系列包括三个模型:LN-Nano 8B、LN-Super 49B以及LN-Ultra 253B。值得一提的是,LN-Ultra不仅在性能上超越了DeepSeek-R1,且其可以在单个8xH100节点上高效运行。同时,它在推理吞吐量与上下文长度方面达到了领先的标准。

training

推理开关功能的创新

Llama-Nem

### DeepSeek-R1 对 Nvidia GeForce RTX 4070 的兼容性分析 DeepSeek-R1 是一款高性能计算平台,设计用于处理复杂的机器学习任务和其他高密度运算工作负载。对于硬件支持方面,官方文档指出该平台能够良好适配多种 GPU 架构[^1]。 针对具体提到的 Nvidia GeForce RTX 4070 配置(具有 12 GB GDDR6X 显存),理论上可以满足大多数情况下运行 DeepSeek-R1 所需的基础条件。然而值得注意的是,在实际应用过程中还需考虑以下几个因素: #### 计算能力需求 RTX 4070 基于 Ada Lovelace 架构构建,拥有强大的浮点运算能力和张量核心性能,这使得其非常适合执行现代 AI 应用程序中的矩阵乘法操作以及其他密集型数据并行算法。 #### 内存容量考量 虽然 12GB VRAM 已经相当可观,但对于某些特别占用资源的任务来说可能仍然不足。如果目标模型非常庞大或者训练集规模巨大,则可能会遇到内存溢出的问题。因此建议评估具体的项目需求来判断是否适合此规格的显卡[^2]。 #### 软件环境匹配度 考虑到驱动版本以及 CUDA Toolkit 版本等因素的影响,确保安装最版 NVIDIA Driver 和相适应版本的 CUDA SDK 将有助于提高系统的稳定性和效率。 ```bash # 安装最的NVIDIA驱动程序 sudo apt-get update && sudo apt-get install nvidia-driver-535 # 下载并安装CUDA工具包 wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update && sudo apt-get -y install cuda ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值