这是一个异步BUCK电路的拓扑图:
我们先来分析一下当开关Q闭合和断开时,电感的工作状态与电压:
- Q闭合时,输入电压Vin给负载Rload供电,同时给电感L充电,电感L处于充电状态,电感L两端的电压为:Vin-Vout;
- Q断开时, 电感L 给负载Rload 通过二极管D 供电, 电感L 处于放电状态,电感L 两端的电压为: -(Vout+Vd);(注意:Vd为二极管两端的导通压降)
在 BUCK电路运行稳定后,‘Q闭合’和‘Q断开’时 , 电感L两端的电压分别为 Vin-Vout 和 -(Vout+Vd),二者都是定值。
下面我们来看电感最重要的公式:
‘Q闭合’和‘Q断开’时,电感L的感值为定值不变,电感L两端的电压也是定值,保持不变;公式中U和L都是定值,则分别在 ‘Q闭合’ 和 ‘Q断开’ 时间段内时 di/dt 为常数,即在这两个时间段内,电感中的电流量是随着时间线性变化的;
由此,我们可以画出BUCK稳定时电感L中的电流随时间变化的图:
将上面的电感公式进行一个变形:
电感L的感值一定;
同时,因为负载电流恒定,一个周期内,开关Q导通时减小的电流大Δ i= 开关Q闭合时增加的电流Δ i;
所以:
Q导通时L两端的电压值 × 开关导通时间 = Q断开时L两端的电压值 × 开关断开时间(即伏秒平衡)
通过上面的式子,我们可以求出开关导通时间和开关断开时间,以及占空比:
由于我们使用异步BUCK进行推导,所以二极管的压降Vd无法忽略;当使用同步BUCK时,Vd看作0来处理即可;