YOLOv10改进,YOLOv10添加DCNv4可变性卷积(windows系统成功编译),全网最详细教程


在这里插入图片描述

原论文摘要

引入了可变形卷积 v4 (DCNv4),这是一种为广泛视觉应用设计的高效且有效的操作算子。DCNv4通过两项关键增强解决了其前身DCNv3的局限性:1. 移除空间聚合中的softmax归一化,以增强其动态特性和表达能力;2. 优化内存访问以最小化冗余操作,从而加速计算。这些改进使得DCNv4相比DCNv3显著加快了收敛速度,并且处理速度大幅提升,前向传播速度超过三倍。DCNv4在多个任务中表现出色,包括图像分类、实例和语义分割,特别是在图像生成方面表现突出。当将DCNv4集成到生成模型(如潜在扩散模型中的U-Net)中时,它超越了基线模型,凸显了其提升生成模型性能的潜力。在实际应用中,将DCNv3替换为DCNv4并应用于InternImage模型创建FlashInternImage,速度提高高达80%,并且在无需进一步修改的情况下性能进一步提升。DCNv4在速度和效率方面的进步,加上其在多种视觉任务中的强大表现,展示了其作为未来视觉模型基础构建块的潜力。

DCNv4介绍

DCNv4在DCNv3中移除了softmax归一化,将介于0和1之间的调制标量转换为类似于卷积的无界动态权重。如图所示,这种改变进一步增强了DCN的动态性质,其中其他运算符具有一定的限制,例如有界值范围或具有输入无关聚合权的固定聚合窗口(卷积)。

在这里插入图片描述
(a) Attention 和 (b) DCNv3 使用动态权重在范围为0到1之间进行空间特征聚合。Attention的窗口(采样点集)对于每个位置是相同的,而DCNv3为每个位置使用一个专用窗口。
© 卷积 具有更灵活的无界值范围来聚合权重,并为每个位置使用专用的滑动窗口,但窗口形状和聚合权重与输入无关。
(d) DCNv4 结合了它们的优势,使用自适应聚合窗口和具有无界值范围的动态聚合权重。

在DCNv4中,使用一个线程来处理同一组中共享采样偏移和聚合权重的多个通道。这样可以减少内存读取和双线性插值系数计算等工作负载,并且可以合并多个内存访问指令。如下图所示:
在这里插入图片描述

DCNv4理论详解可以参考链接:论文地址
DCNv4代码可在这个链接找到:代码地址

本文在YOLOv10中引入DCNv4(可变性卷积),在windows下编译成功,并且解决各种报错,代码已经整理好了,跟着文章复制粘贴,即可直接运行


### 如何在YOLOv8中集成DCNv4 为了在YOLOv8中集成DCNv4,需遵循一系列特定的操作流程以确保顺利实施。首先,在Windows系统成功编译DCNv4是必要的前置条件[^1]。 #### 安装环境与依赖项 确保已安装PyTorch及相关库版本兼容于当前使用的YOLOv8版本。接着按照官方指南下载并编译DCNv4源码,这一步骤对于后续功能模块的正常运作至关重要[^2]。 ```bash git clone https://github.com/your-dcnv4-repo.git cd your-dcnv4-repo python setup.py install ``` #### 修改YOLOv8代码结构支持DCNv4 针对YOLOv8框架本身而言,需要调整部分文件以便能够调用新加入的DCNv4组件。具体来说: - **引入DCNv4层定义**:编辑`models/common.py`或其他相应位置,添加DCNv4的支持。 ```python from dcn_v4 import DeformableConv2d as DCNv4 class CustomLayer(nn.Module): def __init__(self, ...): super(CustomLayer, self).__init__() ... self.dcn = DCNv4(...) def forward(self, x): out = self.dcn(x) return out ``` - **更新配置文件**:依据需求自定义网络架构描述文件(如`.yaml`),指定哪些地方要采用DCNv4替代原有标准卷积操作[^3]。 ```yaml # yolov8_DCNv4.yaml backbone: - [conv, [in_channels, mid_channels], 'custom_layer_with_dcn'] neck: ... head: ... ``` #### 数据预处理与训练准备 完成上述改动之后,还需注意输入数据格式是否满足新的模型要求,特别是当涉及到特殊的数据增强策略时更应谨慎对待。后启动训练过程之前,请务必验证整个pipeline能否无误运行,并观察输出日志确认所有设置均已生效[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值