原始 YOLOv8 训练结果如下:
YOLOv8+MobileNetV4 训练结果如下:
YOLOv8+MobileNetV4+CBAM 注意机制训练结果如下:
YOLOv8+MobileNetV4+CBAM 注意机制+Powerful-IoU损失函数训练结果如下:
摘要
本文将在 YOLOv8 主干中改进融合特征网络引入 MobileNetV4 轻量化骨干,同时,在检测头引入 CBAM机制注意力机制,并采用 Powerful-IoU 损失函数作为模型的损失函数,其中,MobileNetV4 通过引入通用反向瓶颈(UIB)搜索块和 Mobie MQA 注意力模块创新设计,实现了模型的轻量级化;同时,MobileNetV4 采用了优化的 NAS 策略,通过粗粒度和细粒度搜索相结合的方法,显著提高了搜索效率并改善了模型质量。并且在 YOLOv8 的 Neck 网络中加入了 CBAM 注意力机制,使网络能充分利用计算资源,筛选出对目标任务更有用的特征信息。通过增加 CBAM,实现了在不增加网络深度、宽度和输入图像分辨率的前提下,学习到更多有效特征,提升网络性能。采用新的 Powerful-IoU(PIoU)损失函数,该函数结合了目标尺寸自适应惩罚因子和基于锚框质量的梯度调节函数。PIoU 损失引导锚框沿着高效路径回归,收敛速度比现有基于 IoU 的损失函数更快。实验亲测有效,提出的新融合改进方案有利于提升 YOLOv8 的整体目标检测能力。
融合前,需要做的工作
融合前,需要把下面几篇文章的代码添加到 YOLOv8 中,如果已经添加可以忽略此步骤