YOLOv8改进 | 融合篇,YOLOv8改进主干网络为MobileNetV4+CBAM注意机制+Powerful-IoU损失函数(2024 最新IOU),全网首发,实现极限涨点


在这里插入图片描述


原始 YOLOv8 训练结果如下:
在这里插入图片描述

YOLOv8+MobileNetV4 训练结果如下:
在这里插入图片描述

YOLOv8+MobileNetV4+CBAM 注意机制训练结果如下:
在这里插入图片描述

YOLOv8+MobileNetV4+CBAM 注意机制+Powerful-IoU损失函数训练结果如下:
在这里插入图片描述


摘要

本文将在 YOLOv8 主干中改进融合特征网络引入 MobileNetV4 轻量化骨干,同时,在检测头引入 CBAM机制注意力机制,并采用 Powerful-IoU 损失函数作为模型的损失函数,其中,MobileNetV4 通过引入通用反向瓶颈(UIB)搜索块和 Mobie MQA 注意力模块创新设计,实现了模型的轻量级化;同时,MobileNetV4 采用了优化的 NAS 策略,通过粗粒度和细粒度搜索相结合的方法,显著提高了搜索效率并改善了模型质量。并且在 YOLOv8 的 Neck 网络中加入了 CBAM 注意力机制,使网络能充分利用计算资源,筛选出对目标任务更有用的特征信息。通过增加 CBAM,实现了在不增加网络深度、宽度和输入图像分辨率的前提下,学习到更多有效特征,提升网络性能。采用新的 Powerful-IoU(PIoU)损失函数,该函数结合了目标尺寸自适应惩罚因子和基于锚框质量的梯度调节函数。PIoU 损失引导锚框沿着高效路径回归,收敛速度比现有基于 IoU 的损失函数更快。实验亲测有效,提出的新融合改进方案有利于提升 YOLOv8 的整体目标检测能力。


融合前,需要做的工作

融合前,需要把下面几篇文章的代码添加到 YOLOv8 中,如果已经添加可以忽略此步骤

  1. YOLOv8改进,YOLOv8改进损失函数采用Powerful-IoU(2024年最新IOU),助力涨点
### 更改 YOLOv8主干网络为 MobileNet 在 YOLOv8 中替换默认的主干网络为 MobileNet 是一种常见的优化方式,可以显著减少模型参数量并提升推理速度。以下是实现这一目标的具体方法。 #### 修改配置文件 YOLOv8 使用 YAML 配置文件定义其架构细节。要将主干网络更改为 MobileNet,需编辑对应的配置文件。具体操作如下: 1. **创建新的主干网络模块** 定义一个新的基于 MobileNet 的主干网络模块,并将其集成到 YOLOv8 架构中。可以通过继承 `torch.nn.Module` 并实现前向传播逻辑来完成此任务[^1]。 2. **更新配置文件中的 backbone 参数** 找到 YOLOv8 默认配置文件(通常位于 `yolov8/cfg/` 文件夹下),并将其中的 `backbone` 字段指向自定义的 MobileNet 实现路径。例如: ```yaml # yolov8_custom.yaml backbone: - [MobileNetV3, [input_channels]] neck: ... head: ... ``` #### 自定义 MobileNet 模块 为了适配 YOLOv8 的需求,建议使用 MobileNetV3 或更高版本作为主干网络,因为这些版本引入了 SE 结构和 Hard-Swish 激活函数,能够进一步增强性能[^2]。以下是一个简单的 MobileNetV3 主干网络实现示例: ```python import torch.nn as nn class MobileNetV3(nn.Module): def __init__(self, input_channels=3): super(MobileNetV3, self).__init__() # 简化版 MobileNetV3 主干网络 self.features = nn.Sequential( nn.Conv2d(input_channels, 16, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(16), nn.Hardswish(), # 添加更多层... nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(32), nn.Hardswish() ) def forward(self, x): return self.features(x) ``` #### 整合 CBAM 注意机制 如果希望进一步提高检测精度,可以在 MobileNet 上融合 CBAM(Convolutional Block Attention Module)注意机制CBAM 可以动态调整通道和空间维度上的特征权重,从而突出重要区域。 #### 更新损失函数 最后,在更换主干网络的同时,可能还需要调整损失函数以适应新的特征表达能力。例如,采用 Powerful-IoU 损失函数替代传统的 IoU 损失函数,有助于改善边界框回归效果。 ```python def powerful_iou_loss(pred_boxes, target_boxes): ious = calculate_ious(pred_boxes, target_boxes) # 计算 IoUs loss = (1 - ious).mean() # 增强后的 IoU 损失计算 return loss ``` 通过上述步骤即可成功将 YOLOv8主干网络替换为 MobileNet,并结合 CBAM 和新型损失函数进行综合优化。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值