YOLOv11改进,YOLOv11改进损失函数采用Powerful-IoU:自适应惩罚因子和基于锚框质量的梯度调节函数(2024年最新IOU)


在这里插入图片描述


摘要

边界框回归(BBR)是目标检测中的核心任务之一,BBR损失函数显著影响其性能。然而,观察到现有基于IoU的损失函数存在不合理的惩罚因子,导致回归过程中锚框扩展,并显著减缓收敛速度。为了解决这个问题,深入分析了锚框扩展的原因。针对这个问题,提出了一种新的Powerful-IoU(PIoU)损失函数,该函数结合了目标尺寸自适应惩罚因子和基于锚框质量的梯度调节函数。PIoU损失引导锚框沿着高效路径回归,收敛速度比现有基于IoU的损失函数更快。此外,还研究了聚焦机制,并引入了一种非单调注意力层,与PIoU结合形成了新的损失函数PIoU v2。PIoU v2损失增强了对中等质量锚框的聚焦能力。


Powerful-IoU介绍

物体定位是物体检测中的一项关键任务,它严重依赖于边界框回归 (BBR) 损失函数的评估和优化。因此,边界框回归损失函数显著影响物体检测器的性能。大多数 BBR 损失可归类为 𝑙𝑛-norm 和基于 IoU 的损失。如下图所示,不同IoU 损失函数引导的锚框回归过程。彩色框为不同损失函数引导的锚框在回归过程中的分布。很明显,PIoU 损失引导的锚框回归最快,可以最快地逼近目标框。而且,除 PIoU 损失外,所有损失函数引导的锚框都存在面积扩大的问题,而 PIoU 损失引导的锚框不存在此问题。
在这里插入图片描述
现有的基于IoU的损失函数在回归过程中首先增加锚框的尺寸以达到与目标框的重叠,即使锚框的面积已经大于目标框的面积。这种回归方式复杂且缓慢,需要更多轮次才能收敛。此外,它们的惩罚项包含不合理的成分,不能准确反映锚框和目标框之间的差异。它们没有充分考虑目标尺寸,在某些情况下可能会出现退化。为了解决锚框增大等问题,提出了一个具有尺寸自适应性的惩罚因子,引导锚框直接高效地回归。将这个惩罚因子与一个根据锚框质量调整梯度的函数相结合,得到一个新的基于 IoU 的损失,称为 Powerful-IoU (PIoU) 损失。PIoU 损失直接最小化锚框的四个边缘与目标框相应边缘之间的距离。因此在YOLOv10中将原始的损失替换为Powerful-IoU,实现更快的收敛速度和更高的准确率。

理论详解可以参考链接:论文地址
代码可在这个链接找到

### YOLOv11 改进与变化 YOLO (You Only Look Once) 是一种广泛应用于实时目标检测的算法。尽管当前最新的公开版本为YOLOv8,假设存在YOLOv11这一未来版本,则可以推测该版本可能引入了一系列重要的改进优化措施。 #### 架构上的改进 为了提高检测精度并减少计算量,YOLOv11可能会采用更先进的网络架构设计[^3]。这包括但不限于: - **更深的基础骨干网**:通过增加卷积层的数量来增强特征提取能力。 - **多尺度融合机制**:更好地处理不同大小的目标物体,在多个层次上进行特征图融合。 ```python class ImprovedBackbone(nn.Module): def __init__(self): super(ImprovedBackbone, self).__init__() # 更深的卷积层结构 self.conv_layers = nn.Sequential( ... ) def forward(self, x): return self.conv_layers(x) ``` #### 数据预处理与增强技术 数据的质量对于训练效果至关重要。因此,YOLOv11预计会在以下几个方面做出调整: - **自适应输入尺寸**:允许模型接受任意分辨率的图像作为输入,并自动调整内部参数以保持最佳性能。 - **混合样本生成器**:利用MixUp、CutOut等方法合成新的训练样本来扩充数据集规模。 #### 损失函数的设计 损失函数的选择直接影响着模型的学习方向。YOLOv11或许会引入更加精细且鲁棒性强的新颖损失项,比如: - **边界回归中的CIoU Loss**:相比传统的IoU或GIoU,能够提供更快收敛速度以及更高定位准确性。 - **类别不平衡惩罚因子**:针对少数类别的误分类情况施加额外权重,从而缓解正负样本比例失调带来的影响。 #### 推理效率提升策略 考虑到实际应用场景下的资源限制条件,YOLOv11也会致力于降低推理延迟时间,具体手段有: - **轻量化分支裁剪**:去除冗余组件只保留核心部分,使得整个架更为紧凑高效。 - **硬件加速支持扩展**:充分利用GPU/TPU特性实现并行化运算操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值