摘要
IoU(Intersection over Union)损失是目标检测中广泛使用的边界框回归(BBR)方法。然而,现有的 IoU 损失在不同检测任务中存在泛化性较弱的问题,难以适应不同检测器和任务。为此,作者分析了 BBR 中的模式,并提出了一种新的损失函数——Inner-IoU。该方法通过引入辅助边界框加快高 IoU 样本的收敛,从而提高了训练的效率和泛化性。实验表明,在各种检测任务中,Inner-IoU 损失可以提高边界框回归的性能,并且在小目标检测任务中表现出色。感谢剁椒狗头作者提供贡献,文章导读在这里 Inner-IoU:基于辅助边框的IoU损失。YOLOv8 自带的边界框损失有 CIoU、DIoU、GIoU、MDPIoU,下文将新增 SIoU 边界框损失函数,并结合 Inner-IoU 形成 Inner-SIoU,Inner-GIoU,Inner-DIoU,Inner-CIoU,Inner-MDPIoU,也顺便把 SIoU ,MDPIoU 理论介绍一下。
Inner-IoU介绍
Inner-IoU引入辅助边界框,通过缩放因子生成不同大小的辅助边界框计算损失。小比例的辅助边界框适用于高 IoU 样本,有助于加快收敛,而大比例的辅助边界框适用于低 IoU 样本。 Inner-IoU 流程如图所示(图摘自论文):
作者通过将 ratio 值设置 0.7 到 0.8 之间小于 1,产生小于实际边框的辅助边框。实验结果证明其能够对高 IoU 样本产生增益。在实验中 ratio 值大于 1,通过生成较大得辅助边框达到对低 IoU 样本加速收敛的效果,检测效果对比图如下所示(摘自论文):