Decoupled head(解耦合头)和Coupled head(耦合头)

文章介绍了目标检测中耦合头和解耦合头的设计,耦合头通过全连接层同时处理位置和类别信息,可能引发过拟合;解耦合头则将位置和类别信息分开处理,减少资源需求并提高泛化能力。常见解耦合头应用包括FasterR-CNN的RPN和RoIPooling。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

👻解耦合头和耦合头是目标检测中常见的两种头部设计,用于从检测网络的特征图中提取目标位置和类别信息
(先看概念,概念看不懂可以直接看图一定能懂😁)

耦合头(Coupled head)

耦合头通常是将卷积层输出的特征图直接送入几个全连接层或卷积层中,以生成目标位置和类别的输出。
优点:

  • 设计思路简单

缺点:

  • 需要大量的参数和计算资源,容易出现过拟合

解耦合头(Decoupled head)

解耦合头则是将目标位置和类别信息分别提取出来,通过不同的网络分支分别学习,最后再进行融合。
优点:

  • 可以有效减少参数量和计算复杂度
  • 增强模型的泛化能力和鲁棒性

概念图

下面放图,直接秒懂
在这里插入图片描述

总结

简单来说,解耦合头突出在一个解字,就是把特征图用不同的分支分开处理,而耦合头不分开 一起处理了。
常见的解耦合头设计包括Faster R-CNN中的RPN(Region Proposal Network)和 Fast R-CNN中的RoI Pooling

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值