迁移学习允许你利用已经在一个任务上训练好的模型,来解决一个相关但不同的任务。这对于训练数据有限或者需要快速实现一个新任务时非常有用。
在这个例子中,使用了一个在MNIST数字分类任务上训练好的模型,并将其应用于手写数字识别。这是因为MNIST和手写数字识别任务具有相似的特性,所以预先训练好的模型可以在这个新任务上得到不错的表现。
这种方法广泛应用于深度学习中,特别是在图像处理领域。研究人员通常会使用在大规模图像数据集上训练好的模型(如ImageNet)作为基础模型,然后通过微调(fine-tuning)或者在其顶部添加新的层来适应特定的任务,从而提升模型的性能。
迁移学习使得在新任务上获得高性能的模型变得更加容易和高效。
学习测试代码
# coding: utf-8
import sys, os
sys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定
import numpy as np
import pickle
from dataset.mnist import load_mnist
from common.functions import sigmoid, softmax
def get_data():
(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, flatten=True, one_hot_label=False)
return x_test, t_test
def init_network():
with open("sample_weight.pkl", 'rb') as f:
network = pickle.load(f)
return network
# 模型直接进行推理
def predict(network, x):
W1, W2, W3 = network['W1'], network['W2'], network['W3']
b1, b2, b3 = network['b1'], network['b2'], network['b3']
a1 = np.dot(x, W1) + b1
z1 = sigmoid(a1)
a2 = np.dot(z1, W2) + b2
z2 = sigmoid(a2)
a3 = np.dot(z2, W3) + b3
y = softmax(a3)
return y
x, t = get_data() # 获取数据集
network = init_network() # 加载已经学习好的模型
accuracy_cnt = 0
for i in range(len(x)):
y = predict(network, x[i])
p= np.argmax(y) # 获取概率最高的元素的索引
if p == t[i]:
accuracy_cnt += 1
print("Accuracy:" + str(float(accuracy_cnt) / len(x)))