从MNIST数据集中认识理解迁移学习

迁移学习允许你利用已经在一个任务上训练好的模型,来解决一个相关但不同的任务。这对于训练数据有限或者需要快速实现一个新任务时非常有用。

在这个例子中,使用了一个在MNIST数字分类任务上训练好的模型,并将其应用于手写数字识别。这是因为MNIST和手写数字识别任务具有相似的特性,所以预先训练好的模型可以在这个新任务上得到不错的表现。

这种方法广泛应用于深度学习中,特别是在图像处理领域。研究人员通常会使用在大规模图像数据集上训练好的模型(如ImageNet)作为基础模型,然后通过微调(fine-tuning)或者在其顶部添加新的层来适应特定的任务,从而提升模型的性能。

迁移学习使得在新任务上获得高性能的模型变得更加容易和高效。

学习测试代码

# coding: utf-8
import sys, os
sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import numpy as np
import pickle
from dataset.mnist import load_mnist
from common.functions import sigmoid, softmax


def get_data():
    (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, flatten=True, one_hot_label=False)
    return x_test, t_test


def init_network():
    with open("sample_weight.pkl", 'rb') as f:
        network = pickle.load(f)
    return network

# 模型直接进行推理
def predict(network, x):
    W1, W2, W3 = network['W1'], network['W2'], network['W3']
    b1, b2, b3 = network['b1'], network['b2'], network['b3']

    a1 = np.dot(x, W1) + b1
    z1 = sigmoid(a1)
    a2 = np.dot(z1, W2) + b2
    z2 = sigmoid(a2)
    a3 = np.dot(z2, W3) + b3
    y = softmax(a3)

    return y


x, t = get_data() # 获取数据集
network = init_network() # 加载已经学习好的模型
accuracy_cnt = 0


for i in range(len(x)):
    y = predict(network, x[i])
    p= np.argmax(y) # 获取概率最高的元素的索引
    if p == t[i]:
        accuracy_cnt += 1

print("Accuracy:" + str(float(accuracy_cnt) / len(x)))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王摇摆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值