51-50 两万字长文解读ControlNet论文和代码,以及自定义模型训练和图片精确控制生成实验

本文深入解读了ControlNet论文,这是一种用于添加条件控制到文本到图像扩散模型的方法,特别适用于Stable Diffusion。ControlNet通过锁定大型模型的参数并创建可训练副本,通过零卷积层连接,防止过拟合和灾难性遗忘。它支持多种条件控制,如边缘、深度、分割和人体姿势等。文章还探讨了相关工作,包括微调策略、图像扩散和图像到图像转换。此外,文章介绍了如何在自定义数据集上训练模型,以及如何通过ControlNet进行精确控制的图片生成实验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天咱们来看 ICCV2023 最佳论文Adding Conditional Control to Text-to-Image Diffusion Models,又称为ControlNet。提到图像生成Finetuning工程方法,有Textual inversion、DreamBooth、LoRA、T2I-Adapter以及ControlNet,其中最著名的当属ControlNet。它也是Stable Diffusion核心插件,业内把ControlNet 称为精确控制 AI 图像生成的破冰方案。目前文生图经典的做法是集成Stable Diffusion、LoRA、ControlNet一起使用。

  • 本文第一部分,论文精读,重点内容做了备注、解释。
  • 本文第二部分,模型训练。自定义“数据集”进行模型训练,譬如训练智驾场景文生图。
  • 本文第三部分,代码讲解。重点讲了LDM的encoder即ControlNet的实现代码、LDM参数被复制代码、零卷积和权重初始化为零的巧妙设计。
  • 本文第四部分,Stable Diffusion+LoRA+Con
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深圳季连AIgraphX

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值