Unity Shader 矩阵的几何意义

本文介绍了矩阵在Unity Shader中的应用,包括线性变换、仿射变换的概念,重点讲解了平移、缩放和旋转矩阵的几何意义,以及如何进行复合变换。还探讨了在不同的坐标空间中如何进行坐标变换,并提到了Unity中的MVP矩阵及其在CG语言中的实现方式。
摘要由CSDN通过智能技术生成

        矩阵的变换:指我们把一些数据,如点、方向向量甚至是颜色,通过某种方式进行转换的过程。

        线性变换:可以保留向量和标量乘的变换(缩放、旋转、错切、镜像、正交投影)

         仿射变换:合并线性变换和平移变换的变换类型。它可以用一个4x4的矩阵来表示,为此我们需要把矢量扩展到四维空间下,这就是齐次坐标空间。 

         由于3x3的矩阵不能表示平移操作,因此我们扩展到4x4的矩阵,将原来的三维向量转换成四维向量。


        分解基础变换矩阵:纯平移、纯旋转和纯缩放的变换矩阵叫做基础变换矩阵。M3x3用于表示旋转和缩放,t3x1用于表示平移,01x3是零矩阵,1就是标量1。

        平移矩阵:我们用矩阵乘法来表示对一个点的平移变换,如下图可以看出x,y,z分别增加了一个位置的偏移。&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值