矩阵的变换:指我们把一些数据,如点、方向向量甚至是颜色,通过某种方式进行转换的过程。
线性变换:可以保留向量和标量乘的变换(缩放、旋转、错切、镜像、正交投影)
仿射变换:合并线性变换和平移变换的变换类型。它可以用一个4x4的矩阵来表示,为此我们需要把矢量扩展到四维空间下,这就是齐次坐标空间。
由于3x3的矩阵不能表示平移操作,因此我们扩展到4x4的矩阵,将原来的三维向量转换成四维向量。
分解基础变换矩阵:纯平移、纯旋转和纯缩放的变换矩阵叫做基础变换矩阵。M3x3用于表示旋转和缩放,t3x1用于表示平移,01x3是零矩阵,1就是标量1。
平移矩阵:我们用矩阵乘法来表示对一个点的平移变换,如下图可以看出x,y,z分别增加了一个位置的偏移。&