nuScenes数据集评价指标

nuScenes数据集为自动驾驶研究提供了全面的评估标准,包括mAP、mATE、mASE、mAOE、mAVE和mAAE等指标,关注检测精度、定位、尺度、角度、速度和属性等方面的误差。此外,数据集涵盖了360度视野的多传感器融合,23类物体的3D标注,以及关键的长尾分布问题,为解决类不平衡和复杂场景理解带来了挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评价指标:

以bevdet论文为例:

mAP:

在评测时依旧使用目标检测中常用的的AP,不过AP的阈值匹配不使用IoU来计算,而使用在地平面上的2D中心距离d来计算。这样解耦了物体的尺寸和方向对AP计算的影响。d设置为{0.5,1,2,4}米。在计算AP时,去除了低于0.1的recall和precision并用0来代替这些区域。不同类以及不同难度D用来计算mAP:

(This is done in order to decouple detection from object size and orientation but also because objects with small footprints, like pedestrians and bikes, if detected with a small translation error, give 0 IOU. This makes it hard to compare the performance of vision-only methods which tend to have large localization errors )

mATE:

Average Translation Error,平均平移误差(ATE) 是二维欧几里德中心距离(单位为米).

 mASE:

Average Scale Error, 平均尺度误差(ASE) 是1 - IoU, 其中IoU 是角度对齐后的三维交并比

mAOE:

Average Orientation Error.平均角度误差(AOE) 是预测值和真实值之间最小的偏航角差。(所有的类别角度偏差都在360∘度内, 除了障碍物这个类别的角度偏差在180∘ 内)

mAVE:

 Average Velocity Error.平均速度误差(AVE) 是二维速度差的L2 范数(m/s)。

mAAE:

Average Attribute Error,平均属性错误(AAE) 被定义为1−acc, 其中acc 为类别分类准确度。

 NDS:

对于每个TP指标,我们计算所有类别的平均TP(mTP):

  对于每个TP 度量,我们计算所有类的平均TP 度量(mTP),并且所有的TP 指标使用 = 2 米的中心距离计算。

 除了mAP外,nuScenes还提出了一个指标NDS,该指标使用truth positive(TP)指标计算出来。

NDS一半基于检测性能(mAP),而另一半基于检测性能根据位置、大小、方向、属性和速度度量的检测质量(ATE,ASE,AOE,AVE,AAE)。由于mAVE、mAOE和mATE可以大于1,我们在(3)中将每个度量限制在0和1之间。

其他相关

参考链接:自动驾驶数据集nuScenes浅谈 - 知乎

传感器的配备

6个相机、一个LiDAR、5个RADAR

如下图所示。值得注意的是,相比KITTI和Waymo,nuScenes提供了360度的相机视野,所以该数据集可以用来做360度场景的多传感器融合。

 

数据标注

对于每一个场景,知选择其中的关键帧做标注,标注速率在2Hz,总共标注了23类物体的3D bbox(x,w,z,w,l,h,yaw)、类别信息、以及其他的一些属性(可见度、状态)。

对于物体检测问题,对于t时刻的场景,我们可以使用[t-0.5,t]内的传感器数据去检测场景内的物体。并且我们只是选择了23种物体中的10种作为检测对象。他们分别是Car Pedestrian Bus Barrier Traffic cone. Truck Trailer Motorcycle. Constructions. Bicycle。

值得注意的是,由于标注了23类物体,所以class-imblance问题会更加严重,在nuScenes中最大的物体标注imblance为1:10k,而在KITTI中只是1:36。这让研究者可以探讨长尾分布问题。

### nuScenes 数据集性能评估指标及其计算方法 #### 1. 常见的性能评估指标 nuScenes 数据集广泛应用于自动驾驶领域,其主要任务包括目标检测、跟踪以及点云分割等。对于这些任务,常用的性能评估指标如下: - **平均精度均值(Mean Average Precision, mAP)**: 这是一个衡量目标检测模型性能的重要指标,在 nuScenes 中通常用于评价不同类别的物体检测效果[^4]。 - **AMOTA 和 AMOTP**: 对于多目标跟踪任务,nuScenes 提供了两个核心指标:累积平均轨迹数(AMOTA)和累积平均距离误差(AMOTP)。这两个指标综合考虑了跟踪准确性与时序一致性。 - **IoU 阈值下的精确度与召回率曲线**: 特别是在点云分割任务中,交并比(Intersection over Union, IoU)被用来量化预测掩码与真实标签之间的重叠程度[^3]。 - **F-Score 或 F1 Score**: 结合精准率(Precision)和召回率(Recall),通过调和平均的方式给出一个单一数值来表示分类器的整体表现。 #### 2. 各项具体计算方式 ##### (1)mAP 的定义与实现 mAP 是指所有类别 AP 的平均值。而 AP 则是从 PR 曲线下面面积得出的结果。PR 曲线由一系列不同的置信阈值得到的一系列 P-R 点构成。在实际应用过程中,可以通过调整 IOU 阈值来适应特定场景需求。例如,在 nuScenes 上可能采用多个预设好的 IOUs 来分别统计每种情况下的 AP 并最终取加权平均作为总成绩。 ```python def calculate_map(precision_recall_curve): """ Calculate the mean average precision given a list of precisions and recalls. Args: precision_recall_curve (list): List containing tuples of precision and recall values. Returns: float: Computed Mean Average Precision value. """ aps = [] for cls in range(num_classes): pr_points = sorted([(r,p) for p,r in precision_recall_curve[cls]], key=lambda x:x[0]) total_area = sum((pr_points[i+1][0]-pr_points[i][0])*min(pr_points[i+1][1], pr_points[i][1]) for i in range(len(pr_points)-1)) aps.append(total_area) map_value = np.mean(aps) return map_value ``` ##### (2)IoU 计算逻辑 针对像素级或者体素级别的标注数据,IoU 被广泛应用作二元分类问题上的质量评判标准之一。它简单明了地反映了两组区域之间匹配的好坏程度。公式表达为 \( \text{IoU}=\frac{\text{TP}}{\text{FP}+\text{FN}+\text{TP}}\) ,其中 TP 表示真正例数量;FP 错误标记成正样本的数量;FN 正确实例却被错误忽略掉的情况数目。 ```python import numpy as np def compute_iou(boxA, boxB): """Computes Intersection Over Union between two bounding boxes.""" xa = max(boxA['xmin'], boxB['xmin']) ya = max(boxA['ymin'], boxB['ymin']) xb = min(boxA['xmax'], boxB['xmax']) yb = min(boxA['ymax'], boxB['ymax']) interArea = max(0, xb - xa + 1) * max(0, yb - ya + 1) boxAArea = (boxA['xmax'] - boxA['xmin'] + 1)*(boxA['ymax'] - boxA['ymin'] + 1) boxBArea = (boxB['xmax'] - boxB['xmin'] + 1)*(boxB['ymax'] - boxB['ymin'] + 1) unionArea = float(boxAArea + boxBArea - interArea) iou = interArea / unionArea if unionArea != 0 else 0 return iou ``` #### § 相关问题 § 1. 如何优化 nuScenes 数据集中稀疏点云处理的效果? 2. 在 nuScenes 数据集上训练 YOLOv3 模型需要注意哪些方面? 3. 是否存在其他更适合 nuScenes 场景的任务专用评估指标? 4. 多模态融合技术能否改善 nuScenes 数据集上的某些挑战性任务的表现?如果可以的话,请举例说明。 5. 当前主流框架如 MMDetection3D 支持多少版本的 nuScenes 数据集?它们之间有哪些差异?
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值