onsemi——现代电力电子器件的基于物理、可扩展SPICE建模方法

来源

Physically Based, Scalable SPICE Modeling Methodologies for Modern Power Electronic Devices(Publication Order Number: TND6260/D)

摘要

高效的电力电子设计依赖于准确且具有预测性的SPICE模型的可用性。本文提出了针对功率电子半导体的新型物理和可扩展的SPICE模型,包括宽禁带器件。这些模型基于工艺和布局参数,通过在SPICE、物理设计和工艺技术之间建立直接联系,实现设计优化。这些模型在技术开发过程中被用作关键设计组件,并用于新产品的推广。

引言

现代电力电子领域涵盖了各种类型的半导体器件,每种器件在设计空间中都有其独特的优势和折中。这些器件包括沟槽IGBT、超级结MOSFET、沟槽MOSFET、氮化镓HEMT、碳化硅MOSFET和碳化硅二极管。为了充分发挥这些器件的各种优势,高效的功率模块设计取决于准确且具有预测性的SPICE模型的可用性。在传统的行业反应式建模方法中,器件首先通过耗时的TCAD(技术计算机辅助设计)和制造周期的组合来进行设计和制造。一旦器件设计定型并通过验证,就会从测量的特性中抽取SPICE模型,随后供应用仿真使用。一个对工艺参数和布局扰动敏感的物理SPICE模型打破了反应式的循环,使仿真成为器件设计过程中的关键环节[1-3]。这类物理模型通过在TCAD、电路设计和制造之间架起桥梁,刺激了周期时间的缩短。电路设计者可以在工艺开发初期阶段通过仿真评估技术,而不是通过制造迭代。

(这意味着,物理SPICE模型能够将仿真整合进器件的设计流程中,从而在技术开发的早期阶段就能对器件的性能进行评估和优化,避免了重复的制造尝试,大大节省了时间和成本。这种做法使得电路设计者能够在没有实物样品的情况下,基于模型预测的结果进行设计决策,提高了设计效率和成功率。)

历史上,电力半导体在SPICE层面的模型通常是基于简单的子电路或行为模型。简单的子电路模型往往过于基础,无法充分捕捉器件的所有性能,如电流-电压特性、电容-电压特性、瞬态响应和热行为。更先进的行为模型通常并不直接关联器件的布局和工艺参数。例如,在近期报道的关于碳化硅MOSFET的模型中[4-7],通常使用基于SPICE Level 1的简单MOSFET模型来描述沟道,而使用固定线性电阻来表示明显非线性的类似JFET的漂移区域。此外,至关重要的CGD电容是通过非物理的二极管网络、经验拟合函数或表格模型来描述的,如[8]中所述。这些模型既不是基于工艺和布局的,也没有明显的可扩展性。更物理化的模型在[9, 10]中有报道。然而,这些模型同样使用线性电阻来处理非线性的漂移区域,而且没有捕捉到CGD中的耗尽区夹断效应。此外,[9]中的模型是用特定的仿真器语言实现的,这引发了在多种SPICE仿真平台间移植性的问题。上述引用仅限于碳化硅MOSFET模型。所有类型的电力半导体器件都存在类似的情况。本文通过首次提出物理化、可扩展且稳健的、与SPICE无关的模型,为多种电力半导体器件推进了技术前沿。虽然将详细讨论碳化硅MOSFET和沟槽IGBT的模型,但这些方法同样被应用于广泛的器件,包括超级结[1]、沟槽MOSFET[2],最近还包括氮化镓HEMT器件。关于稳健的、与SPICE无关的模型生成的详细信息将在第六节中涵盖。

(这意味着,本文提出的模型不仅能够更准确地反映器件的真实物理行为,还具备高度的通用性和可移植性,能够适应不同的仿真环境,同时,由于模型的物理基础,使得它在不同尺寸和工艺条件下具有良好的可扩展性。这对于电力电子设计者来说,意味着在进行电路设计和优化时,可以拥有更精确的器件模型,从而提高设计的效率和器件性能的可靠性。)

SiC MOSFET 模型描述

图1展示了一个SiC MOSFET的横截面,而图2则显示了相应的SPICE子电路表示。
在这里插入图片描述
图1 SiC MOSFET 的横截面

沟道

沟道是由基于物理的bsim3v3模型描述的,该模型捕捉了所有相关的沟道物理特性[11]。特别是,它准确地捕捉了从亚阈值、弱反型到强反型区域的转换。所提取的迁移率参数U0取值在10至50 cm2/(V·s)的较低范围内,这典型地反映了碳化硅沟道的特点,证明了该模型对碳化硅MOSFET的适用性。模型中包含了灵活的温度建模,可以根据特定的碳化硅MOSFET行为进行调整。此外,广泛应用的bsim3v3模型相比行为模型具有优异的速度和收敛性特性。

(这段描述解释了bsim3v3模型是如何被用来精确描述碳化硅MOSFET沟道行为的。它能够准确地处理不同操作区域的过渡,并且能够反映碳化硅材料的特性,比如较低的迁移率。模型的灵活性还体现在能够调整以适应特定器件在不同温度下的行为。另外,bsim3v3模型在仿真速度和收敛性方面的优越表现,使其成为设计和分析碳化硅MOSFET时的优选模型。这表明,该模型不仅能够提供准确的物理描述,还能确保在电路仿真中的高效性和可靠性。)
在这里插入图片描述
图2 SiC MOSFET 子电路模型

Epi-JFET

pwells之间的epi区域通过标准SPICE JFET模型捕捉。先前推导出的JFET参数的解析模型[1]被修改,以适用于碳化硅MOSFET的JFET区域。类似于bsim3v3模型,SPICE JFET模型是普遍可用的,非常快速,并且具有优秀的收敛性质。捕捉漂移区域线性和非线性行为的JFET SPICE模型参数是电流增益因子β和阈值或夹断电压vto。这些参数被用于众所周知的JFET电流方程中,如三极管区域的方程(1)所示。

I D = β ⋅ [ 2 ⋅ ( V G S − v t o ) − V D S ] ⋅ V D S ⋅ ( 1 + λ ⋅ V D S ) (方程 1 ) \mathrm{I_D=\beta\cdot[2\cdot(V_{GS}-vto)-V_{DS}]\cdot V_{DS}\cdot(1+\lambda\cdot V_{DS})} (方程1) ID=β[2(VGSvto)VDS]VDS(1+λVDS)(方程1

碳化硅MOSFET的JFET增益(β)和夹断(vto)参数的解析模型,已根据JFET耗尽宽度的标准方程,作为物理工艺和布局参数的函数被推导出来。找到耗尽宽度等于pwells之间一半宽度的点,vto参数如下所示

v t o = ϕ − ( d p w 2 ⋅ α ) 2 (方程 2 ) \mathrm{vto}=\phi-\left(\frac{\mathrm{d_{pw}}}{2\cdot\alpha}\right)^2(方程2) vto=ϕ(2αdpw)2(方程2

其中dpw是pwells之间的距离,也就是JFET区域。pwell和具有相关掺杂Ppw和Njfet的JFET之间的内置势垒Φ由下式给出

ϕ = ϕ t ⋅ log ⁡ [ N j f e t ⋅ P p w n i 2 ] (方程 3 ) \phi=\phi_\mathrm{t}\cdot\log\left[\frac{\mathrm{N_{jfet}}\cdot\mathrm{P_{pw}}}{\mathrm{n_i^2}}\right](方程3) ϕ=ϕtlog[ni2NjfetPpw](方程3

其中ni是本征载流子浓度,φt是热电压。耗尽因子λ由下式给出

α = 2 ⋅ ε S i C ⋅ P p w q ⋅ N j f e t ⋅ ( N j f e t + P p w ) (方程 4 ) \alpha=\frac{\sqrt{2\cdot\varepsilon_{\mat

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eren-Yu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值