### YOLOv8 中改进 MSHA 注意力机制的方法实现
在YOLOv8中,可以通过引入高效的注意力机制来增强模型性能。具体来说,可以借鉴其他版本(如YOLOv10)以及相关研究中的方法,对多尺度混合注意力(MSHA, Multi-Scale Hybrid Attention)机制进行优化。
#### 1. **基于 NAMA 的改进**
为了提升效率和轻量化特性,可以在 C2F 模块的不同位置嵌入 NAMA (Non-Aligned Movement Attention)[^1]。这种注意力机制通过重新设计 CBAM 的通道和空间注意力子模块,进一步增强了特征提取能力。对于通道注意力子模块,利用 BN 层的比例因子测量信道方差并指示其重要性。以下是其实现方式:
```python
import torch.nn as nn
class ChannelAttention(nn.Module):
def __init__(self, num_channels, reduction_ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(num_channels, num_channels // reduction_ratio),
nn.ReLU(),
nn.Linear(num_channels // reduction_ratio, num_channels),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y.expand_as(x)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), "kernel size must be 3 or 7"
padding = 3 if kernel_size == 7 else 1
self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
out = torch.cat([avg_out, max_out], dim=1)
out = self.conv(out)
return x * self.sigmoid(out)
class NAMAAttention(nn.Module):
def __init__(self, num_channels):
super(NAMAAttention, self).__init__()
self.channel_attention = ChannelAttention(num_channels)
self.spatial_attention = SpatialAttention()
def forward(self, x):
x_ca = self.channel_attention(x)
x_sa = self.spatial_attention(x_ca)
return x_sa
```
上述代码定义了一个新的 NAMA 注意力模块,该模块结合了通道注意力和空间注意力的功能,并将其应用于网络的各个阶段。
---
#### 2. **引入 MSDA 多尺度空洞注意力模块**
另一种有效的改进方案是从 YOLOv10 借鉴 MSDA(Multi-Scale Dilated Attention)模块的设计思路[^3]。MSDA 能够捕获不同尺度的信息并通过空洞卷积扩展感受野。以下是一个简单的实现示例:
```python
class MSADilatedBlock(nn.Module):
def __init__(self, channels, dilations=[1, 2, 4]):
super(MSADilatedBlock, self).__init__()
self.dilations = dilations
self.convs = nn.ModuleList([
nn.Conv2d(channels, channels//len(dilations), 3, padding=dilation, dilation=dilation)
for dilation in dilations
])
self.fusion_conv = nn.Conv2d(channels, channels, 1)
def forward(self, x):
features = []
for conv in self.convs:
features.append(conv(x))
fused_feature = torch.cat(features, dim=1)
output = self.fusion_conv(fused_feature)
return output
class ImprovedMSHA(nn.Module):
def __init__(self, input_dim, hidden_dim, heads=4, dropout=0.1):
super(ImprovedMSHA, self).__init__()
self.msa_heads = heads
self.hidden_dim_per_head = hidden_dim // heads
self.query_proj = nn.Linear(input_dim, hidden_dim)
self.key_proj = nn.Linear(input_dim, hidden_dim)
self.value_proj = nn.Linear(input_dim, hidden_dim)
self.dropout = nn.Dropout(dropout)
self.out_proj = nn.Linear(hidden_dim, input_dim)
self.msda_block = MSADilatedBlock(input_dim)
def forward(self, x):
batch_size, seq_len, embed_dim = x.shape
q = self.query_proj(x).reshape(batch_size, seq_len, self.msa_heads, -1).transpose(1, 2)
k = self.key_proj(x).reshape(batch_size, seq_len, self.msa_heads, -1).transpose(1, 2)
v = self.value_proj(x).reshape(batch_size, seq_len, self.msa_heads, -1).transpose(1, 2)
attention_scores = torch.matmul(q, k.transpose(-2, -1)) / (embed_dim ** 0.5)
attention_probs = torch.softmax(attention_scores, dim=-1)
attended_values = torch.matmul(attention_probs, v).transpose(1, 2).contiguous().view(batch_size, seq_len, -1)
msda_output = self.msda_block(attended_values.permute(0, 2, 1).unsqueeze(-1)).squeeze(-1).permute(0, 2, 1)
final_output = self.out_proj(msda_output)
return final_output
```
在此基础上,`ImprovedMSHA` 将传统的自注意力与多尺度空洞注意力相结合,从而更好地捕捉全局上下文信息。
---
#### 3. **部分自注意力(PSA)的应用**
除了以上两种方法外,还可以采用 PSA(Partial Self-Attention)模块来简化计算复杂度[^4]。这种方法的核心在于仅将部分特征送入 MHSA 和 FFN 进行处理,而其余部分保持不变。最终通过 1×1 卷积层完成特征融合。
```python
class PartialSelfAttention(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1):
super(PartialSelfAttention, self).__init__()
self.nhead = nhead
self.head_dim = d_model // nhead
self.qkv_linear = nn.Linear(d_model, 3 * d_model)
self.attn_dropout = nn.Dropout(dropout)
self.proj = nn.Linear(d_model, d_model)
self.ffn = nn.Sequential(
nn.Linear(d_model, dim_feedforward),
nn.ReLU(),
nn.Linear(dim_feedforward, d_model)
)
def split_heads(self, x, batch_size):
return x.view(batch_size, -1, self.nhead, self.head_dim).transpose(1, 2)
def forward(self, x):
batch_size, seq_len, _ = x.shape
qkv = self.qkv_linear(x).chunk(3, dim=-1)
q, k, v = map(lambda t: self.split_heads(t, batch_size), qkv)
scores = torch.einsum('bhqd,bhkd->bhqk', q, k) / (self.head_dim ** 0.5)
attn_weights = torch.softmax(scores, dim=-1)
context = torch.einsum('bhqk,bhvd->bhqv', attn_weights, v).transpose(1, 2).contiguous().view(batch_size, seq_len, -1)
partial_context = self.proj(context[:, :seq_len//2])
full_context = torch.cat((partial_context, context[:, seq_len//2:]), dim=1)
ffn_output = self.ffn(full_context)
return ffn_output
```
此模块能够显著降低内存消耗,同时保留足够的表达能力。
---
### 结论
综上所述,在 YOLOv8 中改进 MSHA 可以从多个角度入手,包括但不限于 NAMA、MSDA 和 PSA 等技术手段。这些方法各有侧重,可根据实际需求灵活组合使用。