YOLOv8添加加权双向金字塔结构的特征加强模块BiFPN

13 篇文章 73 订阅
本文介绍了BiFPN,一种改进的多尺度特征融合结构,通过可学习的权重和自顶向下、自底向上的特征融合优化了不同分辨率特征的处理。BiFPN解决了传统FPN在融合不同尺度特征时权重不平等的问题,增强了目标检测任务的性能。文章详细阐述了BiFPN的工作原理,并提供了在YOLOv8中实现该结构的步骤。
摘要由CSDN通过智能技术生成

一、 BiFPN论文

论文地址:1911.09070.pdf (arxiv.org)

二、BiFPN简要介绍

    BiFPN具有高效的多尺度特征融合,在过去的研究中,FPN等多尺度特征融合网络已经被广泛运用,如PANET、NAS-FPN等新的结构也不断涌现。然而,这些工作在总结不同输入特征时通常未能充分考虑它们的分辨率差异,导致对融合输出的贡献不平等的问题。BiFPN引入了可学习的权重,以学习不同输入特征的重要性。同时,该网络通过反复应用自顶向下和自底向上的多尺度特征融合,进一步优化了对不同分辨率特征的融合过程。这一网络结构能够更好地处理多尺度特征融合问题,通过引

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学yolo的小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值