基于YOLOv5、YOLOv8的烟雾报警检测(超实用项目)

目录

1.简介

2.YOLO算法

3.基于YOLOv5、YOLOv8的烟雾检测报警系统

3.1gui界面主代码 

3.2YOLOv5主代码


视频已上传b站 

YOLOv5、YOLOv8检测-烟雾检测报警系统_哔哩哔哩_bilibili

本文为系列专栏,包括各种YOLO检测算法项目、追踪算法项目、双目视觉、深度结构光相机测距测速三维测量项目等

专栏持续更新中,有需要的小伙伴可私聊,接项目定制。

1.简介

随着科技的不断发展,人工智能技术在各个领域得到广泛应用。其中,计算机视觉是人工智能领域中的一个重要分支,它主要研究如何使机器“看”和“理解”图像或视频。在计算机视觉领域,目标检测是一个关键问题,它涉及识别图像或视频中的特定对象,并确定它们的位置。烟雾检测作为目标检测的一个重要应用领域,对于及时发现火灾、减少人员伤亡和财产损失具有重要意义。

  1. 火灾安全:烟雾是火灾初期最常见且最早的指示物之一。快速准确地检测和报警可以帮助尽早采取适当的措施,以防止火灾蔓延和减少损失。通过基于YOLOv5的烟雾报警系统,可以实现实时、高效的烟雾检测,提供及时的火灾预警。

  2. 人员安全:烟雾中的有害气体和毒素可能对人体健康产生严重威胁。火灾发生时,人们通常可能会处于迷惘或恐慌状态,很难准确判断烟雾的存在和危害程度。一个可靠的烟雾报警系统可以提供及早的警示,帮助人们采取必要的行动,增加人员的逃生机会。

  3. 资产保护:火灾造成的财产损失往往巨大。通过及时发现和报警,可以提高火灾发生时应对的效率,减少财产损失。基于YOLOv5的烟雾报警系统可以实现对大范围区域进行监控和烟雾检测,可以在火灾发生前尽早发出警报,有助于及时采取措施保护财产。

  4. 自动化和智能化:基于YOLOv5的烟雾报警系统能够利用计算机视觉技术自动实现烟雾检测,无需人工干预,并能够实现高精度的目标检测。这种系统的自动化和智能化特性可以降低人力成本,提高检测效率和准确性。

总之,基于YOLOv5的烟雾报警系统对于火灾安全、人员安全、资产保护以及自动化智能化等方面都具有重要的背景意义,可以提高火灾预警和处理的效率,减少火灾带来的损失。

本项目旨在基于YOLOv5和YOLOv8这两个先进的目标检测模型,开展火灾检测的研究和应用。YOLO(You Only Look Once)是一种实时目标检测算法,它将目标检测任务转化为一个回归问题,通过单次前向传递神经网络即可得到图像中所有目标的类别和位置。YOLOv5是YOLO系列中的最新版本,它在精度和速度之间取得了很好的平衡,被广泛应用于各种实时目标检测任务。

在本项目中,我们将探讨火灾检测领域的挑战和需求,介绍YOLOv5和YOLOv8的基本原理和算法结构,以及在实际火灾检测场景中的应用。通过本项目的研究,我们希望能够为提高火灾检测的准确性和效率,保障人们的生命财产安全,做出积极贡献。

希望本项目能够为火灾检测领域的研究和实际应用提供有益的参考和启示,推动人工智能技术在火灾安全领域的进一步发展和应用。

2.YOLO算法

YOLO(You Only Look Once)是一种高效的实时目标检测算法,它将目标检测任务转化为一个回归问题,通过单次前向传递神经网络即可得到图像中所有目标的类别和位置。相较于传统的目标检测方法,YOLO具有更快的速度和较高的准确性,使其成为计算机视觉领域中的重要算法之一。

YOLO算法的基本思想是将输入图像划分为一个固定大小的网格(grid),每个网格负责预测图像中是否包含目标以及目标的位置和类别。与传统的滑动窗口方法不同,YOLO将目标检测任务转化为一个回归问题,同时预测所有目标的位置和类别,避免了重复计算,因此速度更快。

以下是YOLO算法的主要特点和步骤:

划分网格: 将输入图像划分为SxS个网格,每个网格负责预测该网格内是否包含目标。

预测框和类别: 每个网格预测B个边界框(bounding boxes)以及每个边界框的置信度(confidence)和类别概率。置信度表示边界框的准确性,类别概率表示目标属于不同类别的概率。

计算损失函数: YOLO使用多任务损失函数,包括边界框坐标的回归损失、置信度的损失(包括目标是否存在的损失和目标位置的精度损失)、类别概率的损失。通过最小化这些损失,网络可以学习到准确的目标位置和类别信息。

非极大值抑制(NMS): 在预测结果中,可能存在多个边界框对同一个目标的重复检测。为了去除这些重叠的边界框,使用NMS算法来选择具有最高置信度的边界框,并消除与其IoU(交并比)高于阈值的其他边界框。

输出结果: 最终,YOLO输出图像中所有目标的位置和类别信息,以及它们的置信度分数。

YOLO的优势在于它的速度和准确性,它能够实时处理高分辨率的图像,并且在不同尺度和大小的目标上具有很好的泛化能力。这使得YOLO广泛应用于实时目标检测、视频分析、自动驾驶等领域。

3.基于YOLOv5、YOLOv8的烟雾检测报警系统

部分代码展示

3.1gui界面主代码 

from PyQt5.QtWidgets import QApplication, QMainWindow, QFileDialog, QMenu, QAction
from main_win.win import Ui_mainWindow
from PyQt5.QtCore import Qt, QPoint, QTimer, QThread, pyqtSignal
from PyQt5.QtGui import QImage, QPixmap, QPainter, QIcon
 
import sys
import os
import json
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import os
import time
import cv2
 
from models.experimental import attempt_load
from utils.datasets import LoadImages, LoadWebcam
from utils.CustomMessageBox import MessageBox
# LoadWebcam 的最后一个返回值改为 self.cap
from utils.general import check_img_size, check_requirements, check_imshow, colorstr, non_max_suppression, \
    apply_classifier, scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box
from utils.plots import colors, plot_one_box, plot_one_box_PIL
from utils.torch_utils import select_device, load_classifier, time_sync
from utils.capnums import Camera
from dialog.rtsp_win import Window
 
 
class DetThread(QThread):
    send_img = pyqtSignal(np.ndarray)
    send_raw = pyqtSignal(np.ndarray)
    send_statistic = pyqtSignal(dict)
    # 发送信号:正在检测/暂停/停止/检测结束/错误报告
    send_msg = pyqtSignal(str)
    send_percent = pyqtSignal(int)
    send_fps = pyqtSignal(str)
 
    def __init__(self):
        super(DetThread, self).__init__()
        self.weights = './yolov5s.pt'           # 设置权重
        self.current_weight = './yolov5s.pt'    # 当前权重
        self.source = '0'                       # 视频源
        self.conf_thres = 0.25                  # 置信度
        self.iou_thres = 0.45                   # iou
        self.jump_out = False                   # 跳出循环
        self.is_continue = True                 # 继续/暂停
        self.percent_length = 1000              # 进度条
        self.rate_check = True                  # 是否启用延时
        self.rate = 100                         # 延时HZ
        self.save_fold = './result'             # 保存文件夹
 
    @torch.no_grad()
    def run(self,
            imgsz=640,  # inference size (pixels)
            max_det=1000,  # maximum detections per image
            device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
            view_img=True,  # show results
            save_txt=False,  # save results to *.txt
            save_conf=False,  # save confidences in --save-txt labels
            save_crop=False,  # save cropped prediction boxes
            nosave=False,  # do not save images/videos
            classes=None,  # filter by class: --class 0, or --class 0 2 3
            agnostic_nms=False,  # class-agnostic NMS
            augment=False,  # augmented inference
            visualize=False,  # visualize features
            update=False,  # update all models
            project='runs/detect',  # save results to project/name
            name='exp',  # save results to project/name
            exist_ok=False,  # existing project/name ok, do not increment
            line_thickness=3,  # bounding box thickness (pixels)
            hide_labels=False,  # hide labels
            hide_conf=False,  # hide confidences
            half=False,  # use FP16 half-precision inference
            ):
 
        # Initialize
        try:
            device = select_device(device)
            half &= device.type != 'cpu'  # half precision only supported on CUDA
 
            # Load model
            model = attempt_load(self.weights, map_location=device)  # load FP32 model
            num_params = 0
            for param in model.parameters():
                num_params += param.numel()
            stride = int(model.stride.max())  # model stride
            imgsz = check_img_size(imgsz, s=stride)  # check image size
            names = model.module.names if hasattr(model, 'module') else model.names  # get class names
            if half:
                model.half()  # to FP16
 
            # Dataloader
            if self.source.isnumeric() or self.source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')):
                view_img = check_imshow()
                cudnn.benchmark = True  # set True to speed up constant image size inference
                dataset = LoadWebcam(self.source, img_size=imgsz, stride=stride)
                # bs = len(dataset)  # batch_size
            else:
                dataset = LoadImages(self.source, img_size=imgsz, stride=stride)
 
            # Run inference
            if device.type != 'cpu':
                model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
            count = 0
            # 跳帧检测
            jump_count = 0
            start_time = time.time()
            dataset = iter(dataset)
 
            while True:
                # 手动停止
                if self.jump_out:
                    self.vid_cap.release()
                    self.send_percent.emit(0)
                    self.send_msg.emit('停止')
                    if hasattr(self, 'out'):
                        self.out.release()
                    break
                # 临时更换模型
                if self.current_weight != self.weights:
                    # Load model
                    model = attempt_load(self.weights, map_location=device)  # load FP32 model
                    num_params = 0
                    for param in model.parameters():
                        num_params += param.numel()
                    stride = int(model.stride.max())  # model stride
                    imgsz = check_img_size(imgsz, s=stride)  # check image size
                    names = model.module.names if hasattr(model, 'module') else model.names  # get class names
                    if half:
                        model.half()  # to FP16
                    # Run inference
                    if device.type != 'cpu':
                        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
                    self.current_weight = self.weights
                # 暂停开关
                if self.is_continue:
                    path, img, im0s, self.vid_cap = next(dataset)
                    # jump_count += 1
                    # if jump_count % 5 != 0:
                    #     continue
                    count += 1
                    # 每三十帧刷新一次输出帧率
                    if count % 30 == 0 and count >= 30:
                        fps = int(30/(time.time()-start_time))
                        self.send_fps.emit('fps:'+str(fps))
                        start_time = time.time()
                    if self.vid_cap:
                        percent = int(count/self.vid_cap.get(cv2.CAP_PROP_FRAME_COUNT)*self.percent_length)
                        self.send_percent.emit(percent)
                    else:
                        percent = self.percent_length
 
                    statistic_dic = {name: 0 for name in names}
                    img = torch.from_numpy(img).to(device)
                    img = img.half() if half else img.float()  # uint8 to fp16/32
                    img /= 255.0  # 0 - 255 to 0.0 - 1.0
                    if img.ndimension() == 3:
                        img = img.unsqueeze(0)
 
                    pred = model(img, augment=augment)[0]
 
                    # Apply NMS
                    pred = non_max_suppression(pred, self.conf_thres, self.iou_thres, classes, agnostic_nms, max_det=max_det)
                    # Process detections
                    for i, det in enumerate(pred):  # detections per image
                        im0 = im0s.copy()
 
                        if len(det):
                            # Rescale boxes from img_size to im0 size
                            det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
 
                            # Write results
                            for *xyxy, conf, cls in reversed(det):
                                c = int(cls)  # integer class
                                statistic_dic[names[c]] += 1
                                label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                                # im0 = plot_one_box_PIL(xyxy, im0, label=label, color=colors(c, True), line_thickness=line_thickness)  # 中文标签画框,但是耗时会增加
                                plot_one_box(xyxy, im0, label=label, color=colors(c, True),
                                             line_thickness=line_thickness)
 
                    # 控制视频发送频率
                    if self.rate_check:
                        time.sleep(1/self.rate)
                    self.send_img.emit(im0)
                    self.send_raw.emit(im0s if isinstance(im0s, np.ndarray) else im0s[0])
                    self.send_statistic.emit(statistic_dic)
                    # 如果自动录制
                    if self.save_fold:
                        os.makedirs(self.save_fold, exist_ok=True)  # 路径不存在,自动保存
                        # 如果输入是图片
                        if self.vid_cap is None:
                            save_path = os.path.join(self.save_fold,
                                                     time.strftime('%Y_%m_%d_%H_%M_%S',
                                                                   time.localtime()) + '.jpg')
                            cv2.imwrite(save_path, im0)
                        else:
                            if count == 1:  # 第一帧时初始化录制
                                # 以视频原始帧率进行录制
                                ori_fps = int(self.vid_cap.get(cv2.CAP_PROP_FPS))
                                if ori_fps == 0:
                                    ori_fps = 25
                                # width = int(self.vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                                # height = int(self.vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                                width, height = im0.shape[1], im0.shape[0]
                                save_path = os.path.join(self.save_fold, time.strftime('%Y_%m_%d_%H_%M_%S', time.localtime()) + '.mp4')
                                self.out = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), ori_fps,
                                                           (width, height))
                            self.out.write(im0)
                    if percent == self.percent_length:
                        print(count)
                        self.send_percent.emit(0)
                        self.send_msg.emit('检测结束')
                        if hasattr(self, 'out'):
                            self.out.release()
                        # 正常跳出循环
                        break
 
        except Exception as e:
            self.send_msg.emit('%s' % e)

3.2YOLOv5主代码

"""Train a YOLOv5 model on a custom dataset
Usage:
    $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
"""
 
import argparse
import logging
import os
import random
import sys
import time
import warnings
from copy import deepcopy
from pathlib import Path
from threading import Thread
 
import math
import numpy as np
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
import yaml
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
 
FILE = Path(__file__).absolute()
sys.path.append(FILE.parents[0].as_posix())  # add yolov5/ to path
 
import val  # for end-of-epoch mAP
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.datasets import create_dataloader
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
    strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
    check_requirements, print_mutation, set_logging, one_cycle, colorstr
from utils.google_utils import attempt_download
from utils.loss import ComputeLoss
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
from utils.metrics import fitness
 
LOGGER = logging.getLogger(__name__)
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv('RANK', -1))
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
 
 
def train(hyp,  # path/to/hyp.yaml or hyp dictionary
          opt,
          device,
          ):
    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, = \
        opt.save_dir, opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
        opt.resume, opt.noval, opt.nosave, opt.workers
 
    # Directories
    save_dir = Path(save_dir)
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'
 
    # Hyperparameters
    if isinstance(hyp, str):
        with open(hyp) as f:
            hyp = yaml.safe_load(f)  # load hyps dict
    LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
 
    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.safe_dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.safe_dump(vars(opt), f, sort_keys=False)
 
    # Configure
    plots = not evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(1 + RANK)
    with open(data) as f:
        data_dict = yaml.safe_load(f)  # data dict
 
    # Loggers
    loggers = {'wandb': None, 'tb': None}  # loggers dict
    if RANK in [-1, 0]:
        # TensorBoard
        if not evolve:
            prefix = colorstr('tensorboard: ')
            LOGGER.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
            loggers['tb'] = SummaryWriter(str(save_dir))
 
        # W&B
        opt.hyp = hyp  # add hyperparameters
        run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
        run_id = run_id if opt.resume else None  # start fresh run if transfer learning
        wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)
        loggers['wandb'] = wandb_logger.wandb
        if loggers['wandb']:
            data_dict = wandb_logger.data_dict
            weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp  # may update weights, epochs if resuming
 
    nc = 1 if single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, data)  # check
    is_coco = data.endswith('coco.yaml') and nc == 80  # COCO dataset
 
    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(RANK):
            weights = attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
        exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        LOGGER.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
    with torch_distributed_zero_first(RANK):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    val_path = data_dict['val']
 
    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False
 
    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
 
    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay
 
    if opt.adam:
        optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
 
    optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    LOGGER.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2
 
    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    if opt.linear_lr:
        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
    else:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)
 
    # EMA
    ema = ModelEMA(model) if RANK in [-1, 0] else None
 
    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']
 
        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']
 
        # Results
        if ckpt.get('training_results') is not None:
            results_file.write_text(ckpt['training_results'])  # write results.txt
 
        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
        if epochs < start_epoch:
            LOGGER.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
                        (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs
 
        del ckpt, state_dict
 
    # Image sizes
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    nl = model.model[-1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz = check_img_size(opt.imgsz, gs)  # verify imgsz is gs-multiple
 
    # DP mode
    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
        logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n'
                        'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
        model = torch.nn.DataParallel(model)
 
    # SyncBatchNorm
    if opt.sync_bn and cuda and RANK != -1:
        raise Exception('can not train with --sync-bn, known issue https://github.com/ultralytics/yolov5/issues/3998')
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        LOGGER.info('Using SyncBatchNorm()')
 
    # Trainloader
    train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
                                              hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=RANK,
                                              workers=workers, image_weights=opt.image_weights, quad=opt.quad,
                                              prefix=colorstr('train: '))
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(train_loader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, data, nc - 1)
 
    # Process 0
    if RANK in [-1, 0]:
        val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls,
                                       hyp=hyp, cache=opt.cache_images and not noval, rect=True, rank=-1,
                                       workers=workers, pad=0.5,
                                       prefix=colorstr('val: '))[0]
 
        if not resume:
            labels = np.concatenate(dataset.labels, 0)
            # c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, names, save_dir, loggers)
 
            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision
 
    # DDP mode
    if cuda and RANK != -1:
        model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
 
    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names
 
    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb), 1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    last_opt_step = -1
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    compute_loss = ComputeLoss(model)  # init loss class
    LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
                f'Using {train_loader.num_workers} dataloader workers\n'
                f'Logging results to {save_dir}\n'
                f'Starting training for {epochs} epochs...')
    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        model.train()
 
        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if RANK in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
                iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
                dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if RANK != -1:
                indices = (torch.tensor(dataset.indices) if RANK == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if RANK != 0:
                    dataset.indices = indices.cpu().numpy()
 
        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders
 
        mloss = torch.zeros(4, device=device)  # mean losses
        if RANK != -1:
            train_loader.sampler.set_epoch(epoch)
        pbar = enumerate(train_loader)
        LOGGER.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
        if RANK in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float() / 255.0  # uint8 to float32, 0-255 to 0.0-1.0
 
            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
 
            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
 
            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
                if RANK != -1:
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.
 
            # Backward
            scaler.scale(loss).backward()
 
            # Optimize
            if ni - last_opt_step >= accumulate:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)
                last_opt_step = ni
 
            # Print
            if RANK in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 + '%10.4g' * 6) % (
                    f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)
 
                # Plot
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
                    if loggers['tb'] and ni == 0:  # TensorBoard
                        with warnings.catch_warnings():
                            warnings.simplefilter('ignore')  # suppress jit trace warning
                            loggers['tb'].add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
                elif plots and ni == 10 and loggers['wandb']:
                    wandb_logger.log({'Mosaics': [loggers['wandb'].Image(str(x), caption=x.name) for x in
                                                  save_dir.glob('train*.jpg') if x.exists()]})
 
            # end batch ------------------------------------------------------------------------------------------------
 
        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
        scheduler.step()
 
        # DDP process 0 or single-GPU
        if RANK in [-1, 0]:
            # mAP
            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
            final_epoch = epoch + 1 == epochs
            if not noval or final_epoch:  # Calculate mAP
                wandb_logger.current_epoch = epoch + 1
                results, maps, _ = val.run(data_dict,
                                           batch_size=batch_size // WORLD_SIZE * 2,
                                           imgsz=imgsz,
                                           model=ema.ema,
                                           single_cls=single_cls,
                                           dataloader=val_loader,
                                           save_dir=save_dir,
                                           save_json=is_coco and final_epoch,
                                           verbose=nc < 50 and final_epoch,
                                           plots=plots and final_epoch,
                                           wandb_logger=wandb_logger,
                                           compute_loss=compute_loss)
 
            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 7 % results + '\n')  # append metrics, val_loss
 
            # Log
            tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss',  # train loss
                    'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
                    'val/box_loss', 'val/obj_loss', 'val/cls_loss',  # val loss
                    'x/lr0', 'x/lr1', 'x/lr2']  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if loggers['tb']:
                    loggers['tb'].add_scalar(tag, x, epoch)  # TensorBoard
                if loggers['wandb']:
                    wandb_logger.log({tag: x})  # W&B
 
            # Update best mAP
            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
            if fi > best_fitness:
                best_fitness = fi
            wandb_logger.end_epoch(best_result=best_fitness == fi)
 
            # Save model
            if (not nosave) or (final_epoch and not evolve):  # if save
                ckpt = {'epoch': epoch,
                        'best_fitness': best_fitness,
                        'training_results': results_file.read_text(),
                        'model': deepcopy(de_parallel(model)).half(),
                        'ema': deepcopy(ema.ema).half(),
                        'updates': ema.updates,
                        'optimizer': optimizer.state_dict(),
                        'wandb_id': wandb_logger.wandb_run.id if loggers['wandb'] else None}
 
                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if loggers['wandb']:
                    if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
                        wandb_logger.log_model(last.parent, opt, epoch, fi, best_model=best_fitness == fi)
                del ckpt
 
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training -----------------------------------------------------------------------------------------------------
    if RANK in [-1, 0]:
        LOGGER.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n')
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if loggers['wandb']:
                files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
                wandb_logger.log({"Results": [loggers['wandb'].Image(str(save_dir / f), caption=f) for f in files
                                              if (save_dir / f).exists()]})
 
        if not evolve:
            if is_coco:  # COCO dataset
                for m in [last, best] if best.exists() else [last]:  # speed, mAP tests
                    results, _, _ = val.run(data_dict,
                                            batch_size=batch_size // WORLD_SIZE * 2,
                                            imgsz=imgsz,
                                            model=attempt_load(m, device).half(),
                                            single_cls=single_cls,
                                            dataloader=val_loader,
                                            save_dir=save_dir,
                                            save_json=True,
                                            plots=False)
 
            # Strip optimizers
            for f in last, best:
                if f.exists():
                    strip_optimizer(f)  # strip optimizers
            if loggers['wandb']:  # Log the stripped model
                loggers['wandb'].log_artifact(str(best if best.exists() else last), type='model',
                                              name='run_' + wandb_logger.wandb_run.id + '_model',
                                              aliases=['latest', 'best', 'stripped'])
        wandb_logger.finish_run()
 
    torch.cuda.empty_cache()
    return results

一、系统概述 本系统是基于树莓派的YOLOv5火灾监测报警系统,主要用于监测室内火灾情况,实现自动报警系统通过摄像头采集图像数据,使用YOLOv5进行目标检测,当检测到火灾时,触发报警器进行报警。 二、系统硬件设计 系统的硬件设计主要包括树莓派、摄像头、报警器等。 1. 树莓派:树莓派是本系统的核心控制器,主要用于控制各个硬件设备的运行和数据的处理。 2. 摄像头:摄像头用于采集室内的图像数据,传输给树莓派进行处理。 3. 报警器:报警器用于检测到火灾时进行报警,提醒人员及时逃生。 三、系统软件设计 系统的软件设计主要包括YOLOv5目标检测算法和报警系统的设计。 1. YOLOv5目标检测算法:本系统采用YOLOv5算法进行目标检测,该算法具有检测速度快、准确率高等优点,能够快速准确地检测出火灾。 2. 报警系统设计:当检测到火灾时,系统会触发报警器进行报警,同时将报警信息发送到管理员手机上,提醒管理员及时处理。 四、系统运行流程 1. 启动系统:启动树莓派,连接摄像头,开启目标检测算法。 2. 图像采集:摄像头采集室内图像数据,传输给树莓派进行处理。 3. 目标检测:采用YOLOv5算法进行目标检测,识别出火灾区域。 4. 报警处理:当检测到火灾时,触发报警器进行报警,同时将报警信息发送到管理员的手机上,提醒管理员及时处理。 五、系统优势 1. 实时性:本系统采用目标检测算法进行实时监测,能够在最短的时间内检测到火灾,确保安全。 2. 精准性:采用YOLOv5算法进行目标检测,具有精准、高效、快速等优点,能够准确地检测出火灾。 3. 可靠性:本系统采用可靠的报警器进行报警,同时将报警信息发送到管理员手机上,保证了系统的可靠性和及时性。 4. 灵活性:本系统采用树莓派作为核心控制器,具有较高的灵活性,能够方便地进行系统的升级和调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈子迩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值