【CVPR2023】使用轻量 ToF 传感器的单目密集SLAM的多模态神经辐射场

目录

导读

本文贡献

本文方法

轻量级ToF传感器的感知原理

多模态隐式场景表示

时间滤波技术

实验

实验结果

消融实验

结论

未来工作


 

论文标题:Multi-Modal Neural Radiance Field for Monocular Dense SLAM with a Light-Weight ToF Sensor

论文链接:https://openaccess.thecvf.com/content/ICCV2023/html/Liu_Multi-Modal_Neural_Radiance_Field_for_Monocular_Dense_SLAM_with_a_ICCV_2023_paper.html

代码:https://zju3dv.github.io/tof_slam/

引用:Liu X, Li Y, Teng Y, et al. Multi-Modal Neural Radiance Field for Monocular Dense SLAM with a Light-Weight ToF Sensor[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 1-11.

导读

这篇论文的主要目标是设计一种新型的dense SLAM(Simultaneous Localization and Mapping,同时定位与地图构建)系统,该系统的输入由单目相机的 RGB 序列和轻量级 ToF(Time-of-Flight)传感器的稀疏信号组成。dense SLAM在增强现实、室内机器人等领域有广泛的应用,现实生活中通常需要高精度和高分辨率的深度传感器,如ToF传感器或结构光传感器。然而,由于这些传感器在尺寸、重量和价格方面存在限制,因此直到最近才在少数高端移动设备中得以应用。

与此相反,轻量级ToF传感器具有成本效益高、紧凑且节能的特点,已经整合到数百种智能手机型号中。因此,本文的目标是充分利用这些轻量级ToF传感器,以实现dense SLAM,从而进一步促进增强现实、虚拟现实等应用的发展。

本文提出了第一个使用单目相机和轻型ToF传感器密集SLAM系统。具体来说,本文提出了一种多模态的隐式场景表示,支持对来自RGB相机和轻量级ToF传感器的信号进行渲染。同时,还引入了深度估计模型,以预测中间的高分辨率深度,以提供额外的监督。最终,本文还开发了一种时间滤波技术,以增强轻量级ToF传感器信号和深度预测性能。

本文贡献

  • 本文首次提出了基于轻量级ToF传感器和单眼相机的稠密SLAM系统

  • 本文提出了一种多模态的隐式场景表示方法,支持渲染来自RGB相机和轻量级ToF传感器的信号。这个表示方法允许系统同时处理不同领域的输入信号,有助于实现准确的相机姿态跟踪和精细的场景重建。

  • 为了提高轻量级ToF传感器的信号质量,作者引入了深度估计模型,用于预测中间的高分辨率深度信息。

  • 为了解决嘈杂信号和数据缺失的问题,作者开发了一种时间滤波技术,以增强轻量级ToF传感器信号和深度预测性能

本文方法

图片

 

本文的方法使用一个单目相机和一个轻量级的ToF传感器作为输入,同时恢复相机运动和场景结构。通过可微分渲染技术,本文的方法能够渲染多模态信号,包括彩色图像、深度图像和区域级别的L5信号。通过最小化重新渲染损失,优化场景结构和相机姿态。

轻量级ToF传感器的感知原理

轻量级ToF传感器旨在低成本、小尺寸和低能耗,并已大规模部署在移动设备上。与传统的ToF传感器相比,传统的ToF传感器提供高分辨率的深度测量,并测量到场景中每个像素的距离。

轻量级ToF传感器通常具有极低的分辨率(例如,8×8个区域),并测量每个区域的深度分布。在这里,我们以ST VL53L5CX [29](简称为L5)作为轻量级ToF传感器的代表,介绍这些传感器的感知原理。

如图2所示,L5通过计算在特定时间间隔内接收的光子数来测量深度分布。然后,结果被拟合为高斯分布,L5仅传输均值和方差以减少能耗和宽带负载。由于其低分辨率和高不确定性,以往的研究中没有探讨过将L5用于SLAM等下游应用。

图片

 

多模态隐式场景表示

几何编码与蒙版渲染

作者采用了一种被称为"Masked Rendering"的方法,灵感来自于MipNeRF中提出的集成位置编码(IPE)理论。这个方法被推广到了基于网格的场景表示中。

IPE的核心思想是通过低通滤波器传递输入特征,即如果特定特征的频率具有大于射线的周期,则该特征不受影响;否则,该特征将朝零缩小。

在网格表示的情况下,作者将来自不同级别特征网格的特征串联在一起,并使用渲染蒙版来根据当前渲染尺度屏蔽来自过高空间频率网格中提取的特征。作者将场景几何编码为包含四个层次的多级特征网格,其中包括区域级别的特征网格和像素级别的特征网格。作者使用蒙版渲染技术在几何编码中进行渲染,以同时获得区域级别的L5信号和像素级别的深度图像。

颜色编码

对于颜色信息,作者仅在最精细级别使用一个单独的特征网格和解码器来进行编码。在解码颜色时,作者还使用了射线方向,以获得3D点的颜色值。

L5信号、颜色和深度图像的渲染

作者使用体积渲染技术来渲染颜色和深度值。具体来说,对于每个颜色像素,沿着发射的射线采样N个点,并通过累积透明度和颜色值来获得最终的颜色像素值。

对于L5信号的渲染也类似,不同之处在于,对于每个L5区域的均值深度值,作者从该区域的中心发射射线,并通过累积距离值来获得最终的深度值。

渲染监督

最终,渲染出的颜色图像、L5信号和深度图像被用于监督系统,以进行相机姿态跟踪和地图构建。深度图像的监督还包括来自之前深度估计模型的深度预测。

时间滤波技术

正如前面提到的,我们使用DELTAR [14]来预测像素级深度图作为额外的监督。DELTAR是一个经过预训练的神经网络,它以L5信号和RGB图像作为输入,并预测相应的深度图。

我们观察到,当存在大量缺失或嘈杂的L5信号时,DELTAR预测的深度图可能会因缺失或嘈杂区域的固有深度模糊而包含严重伪影,从而进一步污染隐式特征的学习并降低SLAM系统的性能。这促使我们开发了一种显式的时间滤波技术(图4)

图片

 

具体来说,所提出的滤波算法包含两个步骤:预测步骤和更新步骤。

在预测步骤中,我们使用具有初始化姿态的神经渲染(Eq. 4)来预测时间戳k中的每个区域的ToF测量Xk = {µ1, σ1}:

图片

 

然后,使用当前的 L5 测量 Zk = {µ2, σ2} 来更新 Xk 为 X'k :

图片

 

实验

实验结果

定性重建结果:

图片

 

没有像素级深度监督的结果:

图片

 

重建过程中的定量比较:

图片

 

相机跟踪结果:

图片

 

消融实验

图片

 

运行时间比较:

图片

 

结论

本文提出了一种新颖的稠密视觉SLAM框架,使用RGB相机和轻量级ToF传感器,采用神经隐式场景表示。为了适应这种新的输入方式,论文提出了一种新颖的多模态特征网格,可以同时用于ToF传感器的区域级别渲染和其他高分辨率信号的像素级渲染。为了确保稳健的跟踪和地图构建,论文利用每个像素的深度预测作为附加监督,该监督进一步通过一种新颖的时间滤波策略进行改进。实验证明,所提出的方法能够在室内场景上提供准确的相机跟踪和高质量的重建结果。

未来工作

进一步改进系统,以克服ToF传感器在室外场景中的限制,并使其足够高效,以在移动机器人上运行。

<think>好的,我现在需要给用户介绍RGB-D相机。用户之前已经问过深度图像,所以我需要确保这次的内容不仅涵盖RGB-D相机的基本概念,还要和之前的回答有所衔接,同时补充新的信息。 首先,用户可能已经了解深度图像的定义和来源,所以在介绍RGB-D相机时,应该明确RGB-D相机是同时获取RGB和深度图像的设备。我需要解释它的组成,即RGB摄像头和深度传感器的结合,比如结构光、ToF或立体视觉。同时,要提到不同技术的优缺点,比如结构光在近距离的高精度,ToF在远距离的表现,以及立体视觉的成本优势。 接下来,用户可能关心应用场景。之前用户提到了自动驾驶、AR、医疗等,这里需要补充更多具体的例子,比如三维重建、SLAM、手势识别等。要举出实际产品,如Kinect、iPhone LiDAR,让用户有更直观的理解。 还要比较RGB-D相机与其他传感器的区别,比如RGB图像和深度图像的融合带来的优势,比如在物体识别、避障中的效果提升。可能需要用表格来对比,但用户之前的回答已经用了表格,这里可以换一种方式,或者简要提及。 用户可能也会想知道技术挑战,比如多模态校准、深度补全等问题,以及解决方案,比如时间同步、传感器融合算法。需要提到最新的研究,比如深度学习在深度补全中的应用,或者多模态融合网络的结构。 另外,用户之前提到了深度图像的噪声特点,这里可以延伸讨论RGB-D相机如何处理这些问题,比如通过算法优化或硬件改进。例如,iPhone LiDAR使用dToF技术提高精度,或者Kinect v2的改进解决v1的不足。 需要确保结构清晰,分点说明,比如定义、技术原理、应用、挑战与解决方案、未来趋势。避免重复之前的内容,但适当引用之前的例子来保持连贯性。 还要注意使用正确的LaTeX格式,比如RGB-D相机的数学模型,如果有的话,使用$$...$$。比如深度信息与RGB的配准公式,或者坐标转换的矩阵。 最后,总结部分要强调RGB-D相机的重要性,以及在不同领域的潜力,呼应之前提到的元宇宙、机器人等未来技术,让用户看到技术的延续性和发展前景。 检查是否有遗漏的重要点,比如主要厂商的产品,或者实际应用中的具体数据(如分辨率、精度),这些能增回答的可信度。确保技术术语解释清楚,比如dToF和iToF的区别,结构光的具体工作流程等。 现在组织内容,确保每个部分逻辑连贯,从基本概念到技术细节,再到应用和挑战,逐步深入。使用代码示例或伪代码来说明数据融合的过程,比如如何将深度图与RGB对齐,或者如何进行点云生成。注意用户可能对实际实现感兴趣,所以提供伪代码片段会更有帮助。 最后,验证所有LaTeX语法是否正确,尤其是数学公式和表格的格式,避免出现错误。确保回答符合用户提供的系统级指令,特别是行内公式和独立公式的格式要求,以及使用中文回答。</think>### RGB-D相机的定义与核心特性 **RGB-D相机**是一种同步捕获**RGB彩色图像**和**深度图像(Depth Image)**的传感器设备(D即Depth)。其核心价值在于**融合颜色与几何信息**,为机器提供更全面的环境感知能力。数学上,每个像素$(x,y)$包含四维数据: $$ \text{RGB-D}(x,y) = [R(x,y), G(x,y), B(x,y), z(x,y)] $$ 其中$z(x,y)$表示该点到相机的距离(单位:米或毫米)。 --- ### RGB-D相机的技术原理与典型设备 #### 1. **结构光(Structured Light)** - **原理**:投射特定红外图案(如点阵、条纹),通过图案形变计算深度。 - 公式:$$ z = \frac{f \cdot s}{\Delta x} $$ 其中$f$为焦距,$s$为投影仪与摄像头基线,$\Delta x$为图案偏移量。 - **设备示例**: - **Intel RealSense L515**:分辨率1280×720,深度范围0.25-9米,精度±2% @ 2米。 - **Apple Face ID**:投射3万多个红外点,用于人脸3D建模。 - **优势与局限**: - ✅ 近距离(<5米)精度高(毫米级) - ❌ 强光干扰下失效,功耗较高 #### 2. **飞行时间法(ToF, Time-of-Flight)** - **原理**:测量光脉冲往返时间$t$计算深度: $$ z = \frac{c \cdot t}{2} \quad (c=3×10^8 \, \text{m/s}) $$ - **分类**: - **iToF(间接)**:通过相位差计算时间(如Microsoft Azure Kinect)。 - **dToF(直接)**:直接测量光子飞行时间(如iPhone LiDAR,精度±3mm @ 1米)。 - **设备示例**: - **iPhone Pro系列**:LiDAR扫描范围5米,支持ARKit快速建模。 - **Sony DepthSense**:用于无人机避障,帧率60fps。 #### 3. **立体视觉(Stereo Vision)** - **原理**:双摄像头模拟人眼视差,通过匹配算法(如SGM)计算深度: $$ z = \frac{f \cdot b}{d} $$ 其中$b$为基线距离,$d$为视差值。 - **设备示例**: - **ZED 2相机**:4K分辨率,深度范围0.3-20米,支持SLAM。 - **Tesla Autopilot HW3.0**:通过8摄像头生成稠密深度图。 --- ### RGB-D相机的关键技术挑战 #### 1. **多模态数据对齐** - **问题**:RGB与深度传感器物理位置不同导致视差(如下图),需坐标转换: ```python # 伪代码:深度图与RGB图像配准 depth_registered = align_depth_to_rgb(depth_raw, rgb_image, camera_params) ``` - 数学形式:通过标定获取旋转矩阵$R$和平移向量$T$,将深度图映射到RGB坐标系: $$ P_{rgb} = R \cdot P_{depth} + T $$ - **解决方案**: - 硬件:精密制造减小传感器间距(如iPhone LiDAR与摄像头同轴设计)。 - 算法:实时在线标定(如Kinect的自动校准)。 #### 2. **深度补全与去噪** - **问题**:原始深度图存在空洞(遮挡区域)和噪声(边缘跳跃)。 - **解决方法**: - **传统方法**:联合双边滤波(利用RGB边缘引导深度修复): $$ \hat{z}(x,y) = \frac{\sum_{(i,j)\in\Omega} w_{color}(i,j) \cdot w_{spatial}(i,j) \cdot z(i,j)}{\sum w_{color} \cdot w_{spatial}} $$ - **深度学习方法**: - **NLSPN(CVPR 2020)**:通过非局部空间传播网络补全深度。 - **GuideNet(ECCV 2020)**:联合RGB与稀疏深度输入生成稠密预测。 --- ### RGB-D相机的典型应用 #### 1. **三维重建与SLAM** - **流程**: 1. RGB-D数据 → 点云生成(每个像素$(x,y,z)$对应颜色$(R,G,B)$)。 2. 多帧点云通过ICP(迭代最近点)算法拼接,构建三维模型。 - **案例**: - **微软Hololens**:实时扫描房间生成网格,用于AR交互。 - **扫地机器人**:通过RGB-D SLAM构建家庭地图(如Roborock S7)。 #### 2. **手势识别与人体姿态估计** - **方法**: - 深度图分割出手部区域 → 关节关键点检测(如MediaPipe)。 - 应用:VR操控(Meta Quest手势交互)、手术机器人控制。 #### 3. **工业检测与物流** - **示例**: - **体积测量**:通过深度图计算包裹尺寸(误差<1cm)。 - **零件装配检测**:RGB-D数据比对CAD模型,识别错位(如图)。 ``` | 检测场景 | RGB图像 | 深度图(高度映射) | 结果 | |--------------------|---------|-------------------|------------| | 正常零件 | 绿色 | 均匀渐变 | 合格 | | 倾斜零件 | 绿色 | 局部突变更深 | 报警 | ``` --- ### RGB-D相机与其他传感器的对比 | 传感器类型 | 数据维度 | 优势 | 局限性 | |--------------|-------------|--------------------------|---------------------| | **RGB相机** | 3通道(颜色) | 高分辨率、低成本 | 缺乏几何信息 | | **LiDAR** | 3D点云 | 远距离、高精度(厘米级) | 昂贵、低分辨率 | | **RGB-D** | 4D(颜色+深度)| 实时稠密三维数据 | 受光照/反射面影响 | --- ### 未来趋势 1. **芯片级集成**:如Apple A系列芯片内置dToF处理单元,降低功耗。 2. **多传感器融合**:RGB-D + IMU + LiDAR,提升自动驾驶环境感知鲁棒性。 3. **算法革新**: - **神经辐射场(NeRF)**:结合RGB-D数据实现逼真三维渲染。 - **事件相机+RGB-D**:解决高速运动模糊问题。 --- ### 总结 RGB-D相机通过**颜色与深度的协同感知**,成为机器人、AR/VR、智能驾驶等领域的核心传感器。随着ToF技术进步(如SPAD阵列提升光子效率)和深度学习算法的优化(如实时深度补全),其应用场景正从工业检测扩展到元宇宙数字孪生等前沿领域。未来,低成本、高精度的RGB-D相机将推动机器对物理世界的理解迈向新维度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈子迩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值