- FMCW表示调频连续波
- 该雷达主要测量前方物体的距离、速度和到达角
- 该模块主要介绍FMCW雷达运行的基础知识,然后主要讨论如何使用雷达进行距离估算。
- 如果雷达前面有一个物体,那么如何估算他与物体间的距离呢
- 如果有多个物体,并且与雷达之间的距离不同,又会怎样?
- 两个物体能够相距多近而仍然能够有望总是被解析为两个物体?
- 什么决定了雷达所能看到的最远的距离?
- FMCW雷达的核心是一种称为线性调频脉冲的信号,线性调频脉冲是随时间以线性方式增长的正弦波
- 所以,在振幅-时间图或者说A-t图中,线性调频脉冲可能以频率为fc的正弦波开始,然后,其频率逐渐增大,最后,假设以fc+B的频率结束(B是线性调频脉冲的带宽)
- 因此,线性调频脉冲本质上是一种频率以线性方式进行调制的连续波,所以我们使用术语调频连续波,或简称FMCW
- 在频率-时间图或者说f-t图中显示同一线性调频脉冲,线性调频脉冲是一条具有特定斜率S的直线。
- 放一些典型数字,该图可以表示以77GHz的频率fc开始的线性调频脉冲,跨越4GHz的带宽B,最终以81GHz的频率结束。线性调频脉冲的斜率S定义线性调频脉冲上升的速率。(线性调频脉冲跨越4GHz的带宽,具有40微秒的Tc时长,这对应于每微秒100MHz的斜率)
- 带宽B和斜率S是用于定义系统性能的重要参数
工作原理
- 合成器生成一个线性调频脉冲,TX天线将线性调频脉冲发射出去,当遇到物体时,该线性调频脉冲会反射回来,RX天线接收反射的线性调频脉冲,RX信号和TX信号混合在一起,最终生成的信号称为IF信号,IF表示中频
- 混频器——混频器具有两个输入和一个输出
- 如果向混频器的两个输入端口输入两个正弦波,那么混频器的输出也是具有以下两条性质的正弦波:
- 性质1:输出的瞬时频率等于两个输入正弦波的瞬时频率的差值。因此即使这些正弦波的频率随时间发生变化,任一时刻输出频率也等于该时刻的输入频率的的差值。
- 性质2:输出正弦波的起始相位等于两个输入正弦波的起始相位差值
- x1和x2是两个输入,x_out是混频器的输出,两个输入分别具有频率w1和w2以及起始相位ϕ1和ϕ2,输出具有频率w1减w2,并具有起始相位ϕ1减ϕ2
中频信号
- RX信号只是TX信号的一个延迟版本。
- 现在假设雷达前方只有一个物体,因此只有一个RX线性调频脉冲,如图,这两条线之间存在固定的距离,该距离由线性调频脉冲的斜率乘以往返延迟给出。
- 雷达前的单个物体产生一个固定频率的中频信号。该信号的频率为Sτ = S2d/c(因为τ = 2d/c,其中d是物体的距离,c是光速)
- 注意1:IF信号仅从RX天线上接收到反射信号开始有效
- 所以说如果要使用ADC对该IF信号进行数字化,那么要确保在经过时间τ之后在接收样本,且只能持续到TX信号消失之前
- 注意2:往返延迟τ通常是总线性调频脉冲时间的很小一部分,例如,对于最大距离为300米并且线性调频脉冲时间Tc=为40us的雷达。τ/Tc =5%
傅里叶变换
- 傅里叶变换是FMCW雷达信号处理的核心
- 傅里叶变换将时域信号转换为频域信号。
- 时域上的一个音调在频域上产生一个峰值,类似,时域上的两个音调在频域上产生两个峰值。但情况是否总是如此?
- 在这个示例中,观测窗口T内,红色音调完成两个周期,而蓝色音调完成了2.5个周期,红蓝两个音调之间的该0.5个周期,差值不足以解析频谱中的两个音调,所以只能得到单个与这两个信号的贡献对应的音调,如下图。
- 如果将观测窗口加倍,从T增加到2T,如图,会导致红蓝两个音调之间的差值为一个周期,所以频谱中解析了两个音调
- 所以,观测周期越长,解析就越好。一般来说,T的观测窗口可以分离出间隔超过1/T Hz的频率分量
- 在雷达前的多个物体
- 上图,这里有一个雷达,它正在发射单个线性调频脉冲,您获取了多个从不同物体反射的线性调频脉冲,每个脉冲具有不同良的延迟,具体取决于物体之间的距离。因此IF信号具有与每个反射相对应的音调,每个音调的频率与雷达到达每个物体的距离成正比(因此频率最低的对应于最近的物体,频率最大的对应最远的物体)
- 有关该IF信号的傅里叶变换会显示多峰值,如下图。
雷达中的距离分辨率
- 也就是说两个物体相距多近而仍然能在IF频谱中解析出两个峰值
- 上面A-t图中这些声波的中频信号的频率很接近以至于在频谱中显示为单个峰值,如下图。
- 如何提高雷达的距离分辨率呢?
- 一是通过增大IF信号的长度来扩展这两个正弦波的观测窗口,使线性调频脉冲得到扩展从而扩展IF信号的持续时间。(增加IF信号的持续时间能够正比增加线性调频脉冲的带宽)如下图,
推导距离分辨率表达式
- 对于以距离Δd分隔的两个物体,它们的IF频率的差值由Δf = S2Δd c给出,由于观测间隔为Tc,这意味着
- 重点:距离分辨率(d_res)只取决于线性调频脉冲覆盖地带宽
问题——哪一种具有更好的范围分辨率?
- 根据刚刚推导的公式c/2B,他们应该具有相同的距离分辨率,但线性调频脉冲A具有更长的持续时间,因此具有更长的IF信号观测窗口,所以如果考虑傅里叶变换的性质,线性调频脉冲A的分辨率应好于线性调频脉冲B下图是一些实际的数据。
数字化中频信号
- 在大多数雷达中,会对IF信号进行数字化以供后续处理,如下图所示。
- 它首先会进行低通滤波,然后由ADC进行数字化,接着被发送到合适的处理器,如DSP,DSP可能首先执行傅里叶变换,以估算物体的距离,随后执行其他种类的处理,以估算这些物体的速度和到达角。
- 对信号进行数字化需要知道目标带宽,以便可以适当的设置低通滤波器和ADC采样率。现假设我们对零到最大距离d_max之间的物体感兴趣,IF信号的最大频率为S2d_max/c,如图
- 相应的,目标带宽也将从零增加到最大IF频率,这意味着低通滤波器的截止频率应高于该IF_max,也就是说,ADC采样率Fs也应该高于该IF_max,如图
- 注意:最大IF带宽取决于斜率和最大距离的乘积
问题——回顾我们之前的例子,我们现在还能对这两个问题说些什么呢?
- 线性调频脉冲A和B具有相同的带宽。但线性调频脉冲A的长度是B的两倍。由于A和B具有相同的带宽,因此它们当然具有相同的距离分辨率,但是,线性调频脉冲A的斜率是B的一半,因此对于相同的最大距离要求,线性调频脉冲A仅需要一半的IF带宽,这意味着ADC具有较小的采样率,因此,线性调频脉冲A具有ADC要求更宽松的优势,而线性调频脉冲B当然也具有仅需要一半测量时间的优势
总结
- 首先,合成器生成一个线性调频脉冲,该线性调频脉冲通过TX天线进行发射。
- 到达雷达前方的多个物体后反射回来,接收器看到该线性调频脉冲的延迟版本。
- 接收到的信号和发射的信号进行混合,从而产生IF信号。
- 该IF信号包含多个音调,其中每个音调的频率,与对应物体的距离成正比。
- 然后,IF信号进行低通滤波并数字化,请注意,ADC的采样率,必须与我们希望看到的最大距离相称。
- 然后对数字化数据进行处理。对该数据执行FFT,频谱中峰值的位置直接对应于物体的距离。注意,这里绘制FFT时x轴上显示的是距离,而不是IF频率。该FFT称为距离FFT,因为它在距离方面对物体进行解析
关键概念和公式
- 一个距离为d的物体产生的中频频率为
- 范围分辨率(d_res)仅取决于带宽(B)
- ADC采样率Fs,限制最大范围(d_max)为
- 当讨论带宽和FMCW雷达时,通常有两种重要带宽,射频带宽(RF bandwidth)和IF带宽。
- 射频带宽是线性调频脉冲跨越的带宽,较大的射频带宽可直接转换为较好的距离分辨率,射频带宽的范围通常为几百MHz至几GHz。
- 另一种带宽是IF带宽,较大的IF带宽主要可以使雷达看到较大的最大距离,还可以实现较快的线性调频脉冲。较快的线性调频脉冲是指具有较高斜率的线性调频脉冲,典型雷达的IF带宽处于低MHz范围内。