H无穷控制学习笔记——系统性能分析

一、连续时间系统

1、系统增益指标

(1)系统性能指标定义

对于线性时不变的连续时间系统: x ˙ ( t ) = A x ( t ) + B w ( t ) z ( t ) = C x ( t ) + D w ( t ) \dot{x}(t)=Ax(t)+Bw(t)\\z(t)=Cx(t)+Dw(t) x˙(t)=Ax(t)+Bw(t)z(t)=Cx(t)+Dw(t)
其中, x ( t ) ∈ R n x(t)\in R^n x(t)Rn是系统的状态, w ( t ) ∈ R q w(t)\in R^q w(t)Rq是外部扰动输入, z ( t ) ∈ R r z(t)\in R^r z(t)Rr是系统被调输出。如果对于某一类外界扰动信号w(t),系统的被调输出z(t)能够保持小,则认为这样的系统具有好的性能,反映了系统抑制外部扰动的能力

考虑系统的增益 Γ \Gamma Γ Γ = s u p w ≠ 0 s i z e ( z ) ‾ s i z e ( w ) \Gamma=\mathop{{sup}}\limits_{w\ne0}\mathop{\underline{size(z)}}\limits_{size(w)} Γ=w=0supsize(w)size(z)

对于平方可积的信号,定义: ∣ ∣ f ∣ ∣ 2 = ( ∫ 0 ∞ ∣ ∣ f ( t ) ∣ ∣ 2 d t ) 1 / 2 ||f||_2=(\int_0^{\infty}||f(t)||^2dt)^{1/2} f2=(0f(t)2dt)1/2
其中是向量的欧式范数,这样定义的 ∣ ∣ f ∣ ∣ 2 ||f||_2 f2正好是信号f的能量。

对于幅值有界的信号,定义: ∣ ∣ f ∣ ∣ ∞ = s u p t ≥ 0 ∣ ∣ f ( t ) ∣ ∣ ||f||_{\infty}=\mathop{{sup}}\limits_{t\ge0}||f(t)|| f=t0supf(t)
其中是向量的欧式范数,当f是一个标量信号时, ∣ ∣ f ∣ ∣ ∞ ||f||_{\infty} f是f的峰值。

因此,系统的一些性能指标可以定义为:

  • IE增益 Γ i e = s u p w ( t ) = w 0 δ ( t ) , ∣ ∣ w 0 ∣ ∣ ≤ 1 ∣ ∣ Z ∣ ∣ 2 \Gamma_{ie}=\mathop{{sup}}\limits_{w(t)=w_0\delta(t),||w_0||\le1}||Z||_2 Γie=w(t)=w0δ(t),w01supZ2
  • EP增益
    Γ e p = s u p ∣ ∣ w ∣ ∣ 2 ≤ 1 ∣ ∣ Z ∣ ∣ ∞ \Gamma_{ep}=\mathop{{sup}}\limits_{||w||_2\le1}||Z||_{\infty} Γep=w21supZ
  • EE增益
    Γ e e = s u p ∣ ∣ w ∣ ∣ 2 ≤ 1 ∣ ∣ Z ∣ ∣ 2 \Gamma_{ee}=\mathop{{sup}}\limits_{||w||_2\le1}||Z||_2 Γee=w21supZ2
  • PP增益
    Γ p p = s u p ∣ ∣ w ∣ ∣ ∞ ≤ 1 ∣ ∣ Z ∣ ∣ ∞ \Gamma_{pp}=\mathop{{sup}}\limits_{||w||_{\infty}\le1}||Z||_{\infty} Γpp=w1supZ

(2)性能指标求解

那么,如何求这些性能指标呢?

  • 求IE增益
    定理:对于原线性时不变连续时间系统,如果该系统是严格真的(D=0)和渐进稳定(矩阵A特征值均具有负实部)的,那么系统的IE增益是有限的,并且 Γ i e = ∣ ∣ B T Y B ∣ ∣ 1 / 2 \Gamma_{ie}=||B^TYB||^{1/2} Γie=BTYB1/2,其中矩阵的范数取为谱范数,即矩阵的最大奇异值,即A的谱范数为 A T A A^TA ATA的最大特征值的平方根。矩阵Y是以下李雅普诺夫方程的解: Y A + A T Y + C T C = 0 YA+A^TY+C^TC=0 YA+ATY+CTC=0
    该定理可以转化为以下的优化问题: m i n    γ s . t .         P A + A T P + C T C < 0 B T P B ≤ γ I P > 0 min~~ \gamma\\ s.t.~~~~~~~PA+A^TP+C^TC<0\\B^TPB\le\gamma I\\P>0 min  γs.t.       PA+ATP+CTC<0BTPBγIP>0
    该优化问题有一个最优值 γ ∗ \gamma^* γ,则 Γ i e = γ ∗ \Gamma_{ie}=\sqrt{\gamma^*} Γie=γ 。该优化问题是一个具有线性不等式约束和线性目标函数的凸优化问题,可以应用LMI工具箱中的求解器mincx来求解。

  • 求EP增益
    定理:对于原线性时不变连续时间系统,如果该系统是严格真的(D=0)和渐进稳定(矩阵A特征值均具有负实部)的,那么系统的EP增益是有限的,并且 Γ e p = ∣ ∣ C X C T ∣ ∣ 1 / 2 \Gamma_{ep}=||CXC^T||^{1/2} Γep=CXCT1/2,其中矩阵的范数取为谱范数,即矩阵的最大奇异值,即A的谱范数为 A T A A^TA ATA的最大特征值的平方根。矩阵X是以下李雅普诺夫方程的解: A X + X A T + B B T = 0 AX+XA^T+BB^T=0 AX+XAT+BBT=0
    该定理可以转化为以下的优化问题: m i n    γ s . t .         A Q + Q A T + B B T < 0 C Q C T ≤ γ I Q > 0 min~~ \gamma\\ s.t.~~~~~~~AQ+QA^T+BB^T<0\\CQC^T\le\gamma I\\Q>0 min  γs.t.       AQ+QAT+BBT<0CQCTγIQ>0
    该优化问题有一个最优值 γ ∗ \gamma^* γ,则 Γ e p = γ ∗ \Gamma_{ep}=\sqrt{\gamma^*} Γep=γ 。该优化问题是一个具有线性不等式约束和线性目标函数的凸优化问题,可以应用LMI工具箱中的求解器mincx来求解。

  • 求EE增益
    定理:对于原线性时不变连续时间系统,设 γ \gamma γ是一个给定的常数,则下列条件是等价的:
    [1]系统渐进稳定,且 Γ e e < γ \Gamma_{ee}<\gamma Γee<γ
    [2]存在一个对称矩阵P>0,使得: [ A T P + P A P B C T B T P − γ I D T C D − γ I ] < 0 \begin{bmatrix} A^TP+PA & PB & C^T\\\\ B^TP & -\gamma I & D^T\\\\ C & D & -\gamma I\\\\ \end{bmatrix}<0 ATP+PABTPCPBγIDCTDTγI<0
    条件[2]是一个线性矩阵不等式,因此可以应用LMI工具箱中的求解器feasp来判断系统增益 Γ e e \Gamma_{ee} Γee是否满足给定的约束条件。

  • 求PP增益
    定理:对于原线性时不变连续时间系统,设 γ \gamma γ是一个给定的标量,如果存在对称矩阵R>0、标量 γ > 0 \gamma>0 γ>0 μ > 0 \mu>0 μ>0,使得: [ A T R + R A + γ R R B B T R − μ I ] < 0 \begin{bmatrix} A^TR+RA+\gamma R & RB\\\\ B^TR & -\mu I\\\\ \end{bmatrix}<0 ATR+RA+γRBTRRBμI<0
    [ λ R 0 C T 0 ( γ − μ ) I D T C D γ I ] > 0 \begin{bmatrix} \lambda R & 0 & C^T\\\\ 0 & (\gamma-\mu) I & D^T\\\\ C & D & \gamma I\\\\ \end{bmatrix}>0 λR0C0(γμ)IDCTDTγI>0那么 Γ p p < γ \Gamma_{pp}<\gamma Γpp<γ
    注意到上述不等式并不是线性矩阵不等式。

2、 H 2 H_2 H2性能

传递函数矩阵 T ( s ) = C ( s I − A ) − 1 B + D T(s)=C(sI-A)^{-1}B+D T(s)=C(sIA)1B+D H 2 H_2 H2范数定义为: ∣ ∣ T ( s ) ∣ ∣ 2 = T r a c e ( ∫ − ∞ + ∞ T ( j w ) T ∗ ( j w ) d w / 2 π ) 1 / 2 ||T(s)||_2=Trace(\int_{-\infty}^{+\infty}T(jw)T^*(jw)dw/2\pi)^{1/2} T(s)2=Trace(+T(jw)T(jw)dw/2π)1/2其中 T ∗ ( j w ) T^*(jw) T(jw)表示矩阵 T ( j w ) T(jw) T(jw)的共轭转置,Trace代表矩阵的迹(n×n矩阵A的主对角线上各个元素的总和)。
T的 H 2 H_2 H2范数的平方等于系统脉冲响应的总的输出能量,还等于系统在白噪声输入信号激励下的稳态输出方差
对于单输入单输出系统, ∣ ∣ T ( s ) ∣ ∣ 2 = Γ i e = Γ e p ||T(s)||_2=\Gamma_{ie}=\Gamma_{ep} T(s)2=Γie=Γep

定理:对于原线性时不变连续时间系统,如果该系统是渐进稳定的,则:
[1] ∣ ∣ T ∣ ∣ 2 < ∞ ||T||_2<\infty T2<当且仅当D=0;
[2]如果D=0,那么以下结论等价:
(i) ∣ ∣ T ∣ ∣ 2 < γ ||T||_2<\gamma T2<γ
(ii)存在对称矩阵X>0,使得 A X + X A T + B B T < 0 , T r a c e ( C X C T ) < γ 2 AX+XA^T+BB^T<0,Trace(CXC^T)<\gamma^2 AX+XAT+BBT<0,Trace(CXCT)<γ2
(iii)存在对称矩阵Y>0,使得 A T Y + Y A + C T C < 0 , T r a c e ( B T Y B ) < γ 2 A^TY+YA+C^TC<0,Trace(B^TYB)<\gamma^2 ATY+YA+CTC<0,Trace(BTYB)<γ2
根据该定理,可以应用LMI工具箱的求解器feasp来验证系统是否满足给定的 H 2 H_2 H2范数约束条件。

3、 H ∞ H_\infty H性能

传递函数矩阵 T ( s ) = C ( s I − A ) − 1 B + D T(s)=C(sI-A)^{-1}B+D T(s)=C(sIA)1B+D H ∞ H_\infty H范数定义为: ∣ ∣ T ( s ) ∣ ∣ ∞ = s u p w σ m a x ( T ( j w ) ) ||T(s)||_\infty=\mathop{{sup}}\limits_w\sigma_{max}(T(jw)) T(s)=wsupσmax(T(jw))系统频率响应的最大奇异值的峰值
∣ ∣ T ( s ) ∣ ∣ ∞ = Γ e e ||T(s)||_\infty=\Gamma_{ee} T(s)=Γee
因此,通过求解优化问题: m i n    γ s . t .    [ A T P + P A P B C T B T P − γ I D T C D − γ I ] < 0 P > 0 min~~ \gamma\\ s.t.~~\begin{bmatrix} A^TP+PA & PB & C^T\\\\ B^TP & -\gamma I & D^T\\\\ C & D & -\gamma I\\\\ \end{bmatrix}<0\\P>0 min  γs.t.  ATP+PABTPCPBγIDCTDTγI<0P>0可以得到系统最优 H ∞ H_\infty H性能分析问题的解。由于该问题是一个具有线性矩阵不等式约束和线性目标函数的凸优化问题,因此可以应用LMI工具箱的求解器mincx来求解。

4、举例说明

某二阶系统: G ( s ) = k s 2 + 2 ζ ω s + ω 2 G(s)=\frac{k}{s^2+2\zeta\omega s+\omega^2} G(s)=s2+2ζωs+ω2k该系统的一个状态空间实现为: [ A B C D ] = [ − 2 ζ ω − ω 2 1 1 0 0 0 k 0 ] \begin{bmatrix} A & B\\ C & D \end{bmatrix}=\begin{bmatrix} -2\zeta\omega & -\omega^2 & 1\\ 1 & 0 & 0\\ 0 & k & 0 \end{bmatrix} [ACBD]=2ζω10ω20k100
系统1: G 1 ( s ) : ζ = 0.1 , ω = 1 , k = 1 G_1(s):\zeta=0.1,\omega=1,k=1 G1(s)ζ=0.1ω=1k=1
系统2: G 2 ( s ) : ζ = 1 , ω = 3 , k = 20 G_2(s):\zeta=1,\omega=3,k=20 G2(s)ζ=1ω=3k=20

(1)IE增益

求解该系统的IE增益代码实现为:

clc;clear all
%% 定义系统状态空间矩阵
A1=[-0.2,-1;1,0];B1=[1;0];C1=[0,1];  % 系统1
A2=[-6,-9;1,0];B2=[1;0];C2=[0,20];   % 系统2
%% 求解IE增益方法1:求解李雅普诺夫方程 YA+A'Y+C'C=0
% matlab X=lyap(A,C)可用于求解李雅普诺夫方程AX+XA(^T)=-C
CC1=C1'*C1;AA1=A1';
Y1=lyap(AA1,CC1);
ie_1=sqrt((norm(B1'*Y1*B1,2)))

CC2=C2'*C2;AA2=A2';
Y2=lyap(AA2,CC2);
ie_2=sqrt((norm(B2'*Y2*B2,2)))
%% 求解IE增益方法2:转化为优化问题用LMI工具箱求解
setlmis([]);                        % 定义一个矩阵不等式系统
X=lmivar(1,[2 1]);                  % P矩阵是一个2*2的对称矩阵
r=lmivar(1,[1 1]);                  % gamma
lmiterm([1 1 1 X],1,A1,'s');        % PA+A'P
lmiterm([1 1 1 0],CC1);             % C'C
lmiterm([2 1 1 X],B1',B1);          % B'PB
lmiterm([-2 1 1 r],1,1);            % -gammaI
lmiterm([-3 1 1 X],1,1);            % P
lmisys=getlmis;

n = decnbr(lmisys);             % 系统决策变量个数
c = zeros(n,1);                 % 确定向量c的维数
for j=1:n
     [rj]=defcx(lmisys,j,r);
      c(j)=trace(rj);
end

[copt, xopt]=mincx(lmisys,c);
xx=dec2mat(lmisys,xopt,X);
gamma=dec2mat(lmisys,xopt,r);
ie_11=sqrt(gamma)
%2
setlmis([]);                        % 定义一个矩阵不等式系统
X=lmivar(1,[2 1]);                  % P矩阵是一个2*2的对称矩阵
r=lmivar(1,[1 1]);                  % gamma
lmiterm([1 1 1 X],1,A2,'s');        % PA+A'P
lmiterm([1 1 1 0],CC2);             % C'C
lmiterm([2 1 1 X],B2',B2);          % B'PB
lmiterm([-2 1 1 r],1,1);            % -gammaI
lmiterm([-3 1 1 X],1,1);            % P
lmisys=getlmis;

n = decnbr(lmisys);             % 系统决策变量个数
c = zeros(n,1);                 % 确定向量c的维数
for j=1:n
     [rj]=defcx(lmisys,j,r);
      c(j)=trace(rj);
end

[copt, xopt]=mincx(lmisys,c);
xx=dec2mat(lmisys,xopt,X);
gamma=dec2mat(lmisys,xopt,r);
ie_22=sqrt(gamma)

输出为:
系统1的ie_1=1.5811(李雅普诺夫方程);ie_11=1.5818(LMI工具箱);
系统2的ie_2=1.9245(李雅普诺夫方程);ie_22=1.9261(LMI工具箱);

(2)EP增益

求解该系统的EP增益代码实现为:

clc;clear all
%% 定义系统状态空间矩阵
A1=[-0.2,-1;1,0];B1=[1;0];C1=[0,1];  % 系统1
A2=[-6,-9;1,0];B2=[1;0];C2=[0,20];   % 系统2
%% 求解EP增益方法1:求解李雅普诺夫方程 AX+XA'+BB'=0
% matlab X=lyap(A,C)可用于求解李雅普诺夫方程AX+XA(^T)=-C
BB1=B1*B1';AA1=A1;
X1=lyap(AA1,BB1);
ep_1=sqrt((norm(C1*X1*C1',2)))

BB2=B2*B2';AA2=A2;
X2=lyap(AA2,BB2);
ep_2=sqrt((norm(C2*X2*C2',2)))
%% 求解EP增益方法2:转化为优化问题用LMI工具箱求解
setlmis([]);                        % 定义一个矩阵不等式系统
X=lmivar(1,[2 1]);                  % Q矩阵是一个2*2的对称矩阵
r=lmivar(1,[1 1]);                  % gamma
lmiterm([1 1 1 X],A1,1,'s');        % AQ+QA'
lmiterm([1 1 1 0],BB1);             % BB'
lmiterm([2 1 1 X],C1,C1');          % CQC'
lmiterm([-2 1 1 r],1,1);            % -gammaI
lmiterm([-3 1 1 X],1,1);            % Q
lmisys=getlmis;

n = decnbr(lmisys);             % 系统决策变量个数
c = zeros(n,1);                 % 确定向量c的维数
for j=1:n
     [rj]=defcx(lmisys,j,r);
      c(j)=trace(rj);
end

[copt, xopt]=mincx(lmisys,c);
xx=dec2mat(lmisys,xopt,X);
gamma=dec2mat(lmisys,xopt,r);
ep_11=sqrt(gamma)
%2
setlmis([]);                        % 定义一个矩阵不等式系统
X=lmivar(1,[2 1]);                  % Q矩阵是一个2*2的对称矩阵
r=lmivar(1,[1 1]);                  % gamma
lmiterm([1 1 1 X],A2,1,'s');        % AQ+QA'
lmiterm([1 1 1 0],BB2);             % BB'
lmiterm([2 1 1 X],C2,C2');          % CQC'
lmiterm([-2 1 1 r],1,1);            % -gammaI
lmiterm([-3 1 1 X],1,1);            % Q
lmisys=getlmis;

n = decnbr(lmisys);             % 系统决策变量个数
c = zeros(n,1);                 % 确定向量c的维数
for j=1:n
     [rj]=defcx(lmisys,j,r);
      c(j)=trace(rj);
end

[copt, xopt]=mincx(lmisys,c);
xx=dec2mat(lmisys,xopt,X);
gamma=dec2mat(lmisys,xopt,r);
ep_22=sqrt(gamma)

输出为:
系统1的ep_1=1.5811(李雅普诺夫方程);ep_11=1.5822(LMI工具箱);
系统2的ep_2=1.9245(李雅普诺夫方程);ep_22=1.9260(LMI工具箱);

(3)EE增益

求解该系统的EE增益代码实现为:

clc;clear all
%% 定义系统状态空间矩阵
A1=[-0.2,-1;1,0];B1=[1;0];C1=[0,1];D1=0;  % 系统1
A2=[-6,-9;1,0];B2=[1;0];C2=[0,20];D2=0;   % 系统2
%% 求解EE增益方法:转化为优化问题用LMI工具箱求解
setlmis([]);                        % 定义一个矩阵不等式系统
X=lmivar(1,[2 1]);                  % P矩阵是一个2*2的对称矩阵
r=lmivar(1,[1 1]);                  % gamma

lmiterm([1 1 1 X],A1',1,'s');       % A'P+PA
lmiterm([1 2 1 X],B1',1);           % B'P
lmiterm([1 2 2 r],-1,1);            % -gammaI
lmiterm([1 3 1 0],C1);              % C
lmiterm([1 3 2 0],D1);              % D
lmiterm([1 3 3 r],-1,1);            % -gammaI
lmiterm([-2 1 1 X],1,1);            % P

lmisys=getlmis;

n = decnbr(lmisys);             % 系统决策变量个数
c = zeros(n,1);                 % 确定向量c的维数
for j=1:n
     [rj]=defcx(lmisys,j,r);
      c(j)=trace(rj);
end

[copt, xopt]=mincx(lmisys,c);
xx=dec2mat(lmisys,xopt,X);
gamma=dec2mat(lmisys,xopt,r);
ee_11=gamma
%2
setlmis([]);                        % 定义一个矩阵不等式系统
X=lmivar(1,[2 1]);                  % P矩阵是一个2*2的对称矩阵
r=lmivar(1,[1 1]);                  % gamma

lmiterm([1 1 1 X],A2',1,'s');       % A'P+PA
lmiterm([1 2 1 X],B2',1);           % B'P
lmiterm([1 2 2 r],-1,1);            % -gammaI
lmiterm([1 3 1 0],C2);              % C
lmiterm([1 3 2 0],D2);              % D
lmiterm([1 3 3 r],-1,1);            % -gammaI
lmiterm([-2 1 1 X],1,1);            % P

lmisys=getlmis;

n = decnbr(lmisys);             % 系统决策变量个数
c = zeros(n,1);                 % 确定向量c的维数
for j=1:n
     [rj]=defcx(lmisys,j,r);
      c(j)=trace(rj);
end

[copt, xopt]=mincx(lmisys,c);
xx=dec2mat(lmisys,xopt,X);
gamma=dec2mat(lmisys,xopt,r);
ee_22=gamma

输出为:
系统1的ee_11=5.035388(LMI工具箱);
系统2的ee_22=2.222583(LMI工具箱);

本文是作者在日常学习生活中所作,难免有遗漏或错误,遇到问题的读者请点击给我写信向我的邮箱反馈,不胜感激。

  • 8
    点赞
  • 58
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
连续系统的时域分析是信号与系统学习中的重要部分。时域分析研究的是信号在时间域内的变化规律,常用的分析方法包括冲激响应法、单位阶跃响应法和相应方程法。 1. 冲激响应法 冲激响应法是一种基于系统输入信号的冲激函数的响应来分析系统时域特性的方法。具体来说,将系统输入信号表示为一个冲激序列的加权和,然后计算出系统对每个冲激的响应,得到系统的冲激响应函数。然后,通过线性时不变系统的特性,可以将任何输入信号都表示为冲激序列的加权和,从而得到系统对任何输入信号的响应。 2. 单位阶跃响应法 单位阶跃响应法是一种基于系统输入信号的单位阶跃函数的响应来分析系统时域特性的方法。具体来说,将系统输入信号表示为一个单位阶跃函数的加权和,然后计算出系统对每个单位阶跃函数的响应,得到系统的单位阶跃响应函数。然后,通过线性时不变系统的特性,可以将任何输入信号都表示为单位阶跃函数的加权和,从而得到系统对任何输入信号的响应。 3. 相应方程法 相应方程法是一种基于系统微分方程的解析解来分析系统时域特性的方法。具体来说,根据系统微分方程的特性,可以得到系统的传递函数,然后通过拉普拉斯变换将输入信号和传递函数变换到频域内,最终通过反变换得到系统的时域响应。 以上三种方法都是分析连续系统时域特性的重要方法,各自适用于不同的情况。掌握这些方法可以帮助我们更好地理解和分析连续系统的时域特性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值