3D Multi-Object Tracking: A Baseline and New Evaluation Metrics论文阅读记录

复现:

ubuntu20.04上conda环境复现AB3DMOT目标追踪算法记录_ng_T的博客-CSDN博客https://blog.csdn.net/weixin_45650071/article/details/127584612?spm=1001.2014.3001.5502

摘要部分:

        论文发表前3D检测的工作重点:更多地集中于开发精确的系统,而忽视了计算成本和系统复杂度。引出本文的工作重点; In contrast, this work proposes a simple real-time 3D MOT system

摘要中提到的整体步骤:Our system first obtains 3D detections from a LiDAR point cloud. Then, a straightforward combination of a 3D Kalman filter and the Hungarian algorithm is used for state estimation and data association.(即首先从点云中获取检测结果(可以使用现有的目标检测算法),然后利用卡尔曼滤波和Hungarian 算法进行状态估计和数据关联(可以参考2D上的sort算法))

Kitii数据集:Additionally, 3D MOT datasets such as KITTI evaluate MOT methods in the 2D space and standardized 3D MOT evaluation tools are missing for a fair comparison of 3D MOT methods.(提到kitti数据集之前一直用的2D追踪评估的方法)引出本文的创新点:Therefore, we propose a new 3D MOT evaluation tool along with three new metrics to comprehensively evaluate 3D MOT methods.

摘要总结:本文提出了一种(将2Dsort算法应用到3D)注重简单而准确的实时3D目标追踪,扩展了官方的kitti数据3Dmot的评估模式,在精度方面提高了4个百分点,速度超过2D追踪的65倍达到214.7FPS

介绍部分:

现有的方法有什么缺点?:

       尽管精度高,但是缺乏实时性,追求精度而设计了各种复杂的模块,缺乏各模块对准确率贡献度的掌握。而且通常在2D或者鸟瞰图上进行滤波。

现有检测精度对比(2D图像上,这里作者将追踪的3D结果投影回2D图像进行对比,本文提供的方法在速度和精度上做到平衡):

 In addition to the 3D MOT system, we also observed two issues in 3D MOT evaluation:

3D-MOT评估有什么缺点:

(1)Standard MOT benchmarks such as the KITTI dataset only supports 2D MOT evaluation, i.e., evaluation on the image plane(现有的kitti数据集仅支持2D平面的评估,3D评估时将三维投影到2D图像平面)引出作者的解决方案:To overcome the issue, we propose an MOT evaluation tool that evaluates MOT systems directly in 3D space using 3D metrics;

(2) Common MOT metrics such as MOTA and MOTP do not consider the confidence score of tracked objects.(不考虑轨迹的置信度)引出本文工作:To address the issue, we propose three new integral metrics to summarize the performance of MOT methods across many thresholds. 提出了两个新的度量标准——AMOTAAMOTP (average)

本文贡献(主要工作):提供了简单准确的3D追踪模型、对官方的追踪评估进行三维扩展、提供了两种3D追踪指标。

相关工作

基于2D的追踪算法:可以分为两类:批处理方法以及在线方法。前者在一批数据中寻找最优解,后者关注当前帧,在线方法通常将数据关联表述为二分图匹配问题,并使用匈牙利算法解决。后处理方法有Hungarian算法和神经网络算法,本文为了效率和设计的简单只使用了Hungarian算法以及恒速的速度模型。

基于3D的:[11] proposed to estimate the distance of objects to the camera and their velocity in the 3D space as the motion cue. [15] used an unscented Kalman filter to estimate the linear and angular velocity on the ground. [24] proposed a 2D-3D Kalman filter to utilize the observation from the image and 3D world.

方法部分

As our system is an online MOT system, at every timestamp, we only require detections in the current frame and associated trajectories from the previous frames(本文将当前帧和之前帧进行数据关联).

 (A)通过3D检测从点云生成检测的结果(包括边界框。3D检测算法如pointRcnn、pvRCNN。本文使用预训练好的检测器)(B)利用3D卡尔曼滤波利用上一帧的轨迹进行当前帧状态估计(C)通过数据关联匹配卡尔曼滤波结果和当前帧检测的结果(D)更新当前帧目标状态(E)对新出现和消失的目标进行处理。

步骤(A)检测:在第t帧,3D检测模块输出是一组检测 Dt = {Dt1,Dt2,…,Dtn}n是不同帧之间变化的检测次数,就是一帧检测的bboxs数量),每个检测Dti用一个上面提到的组合(x,y,z,l,w,h,θ,s)来表示。(x,y,z表示3D检测目标中心)(l,w,h表示目标的size)(θ表示方向角,S表示置信度)

步骤(B)状态检测:物体轨迹的状态表示为一个11维向量T = (x, y, z, θ, l, w, h, s, vx, vy, vz)后三个表示空间匀速运动,不添加角速度是因为加了角速度会减低准确率。每一帧会接受前一帧关联的轨迹

 (其中mt-1表示t-1帧轨迹的数量)传播t帧通过恒定速度估计:

 得到的预测Test(xest, yest, zest, θ, l, w, h, s, vx, vy, vz)将送入数据关联模块

步骤(C)数据关联:Test预测轨迹和检测Dt通过匈牙利算法进行关联。

通过计算每一对之间的IOU值或者计算中心距离值得到相似性矩阵。然后数据关联成为二分图匹配问题,利用匈牙利算法在多项式时间内解决二分图匹配问题,但是会设置一定的IOU值筛选误匹配情况,或者如果使用中心距离计算亲和矩阵,则中心的距离大于阈值 distmax

 其中 Tmatch 和 Dmatch 是匹配的轨迹和检测,wt 表示匹配的数量。Tunmatch和Dunmatch是没有匹配的轨迹和检测。请注意,Tunmatch 是测试中 Tmatch 的互补集。类似地,Dunmatch 是 Dt 中 Dmatch 的互补集。

步骤(D)状态更新:根据Tmatch和对应的每个Dmatch更新轨迹从而解决Tmatch中的不确定性。得到最终的关联轨迹Following the Bayes rule, the updated state of each trajectory, where k ∈ {1, 2, · · · , wt}权重由匹配轨迹Tk匹配和检测Dk匹配的状态不确定性决定(详情请参考卡尔曼滤波器[12])。利用Bayes rule存在不好定向的问题比如检测和预测刚好180°(及刚好相反)。虽然我们知道显然不可能在0.1秒内突然转向,但是在检测时是有可能出现检查的朝向错误,使得我们追踪面临该场景,这将导致前后该目标轨迹和地面之间匹配到低 3D IoU。本文针对该问题提出的解决方案是:在匹配时大于90°时直接加上180°的方向角来规避该问题。

步骤E,对新目标以消失目标的管理:新目标的创建将上述Dunmatch中的对象作为潜在新出现的目标。为了避免错误的跟踪轨迹需要直到下一帧与当前帧能匹配的新对象时才为其分配新的轨迹记录。一旦新轨迹被成功创建,我们将轨迹的状态与其最近的测量相同,以vxvyvz的零速度进行初始化。消失的目标:将上述的Tunmatch作为潜在的离开场景的目标。为了避免偶尔一帧中的误检导致的误删除,本文一直对未匹配的Tunmatch进行追踪直到最大帧数未出现即当其消失。

        本文还提出了两个新的度量标准,我们称之为AMOTAAMOTP(平均MOTAMOTP),总结所有阈值的MOTAMOTP,而不是使用单一阈值。与目标检测的平均精度相似,AMOTA和通过MOTAMOTP对召回曲线的积分计算AMOTP

        MOTA:跟踪准确度(误报,错过目标,ID切换),MOTP跟踪精度:标注和预测的BBox的不匹配度

### 回答1: SiamMOT是一种基于Siamese网络的多目标跟踪算法,它可以同时跟踪多个目标,并且在速度和准确度方面都有很好的表现。该算法使用了深度学习技术,通过学习目标的特征来进行跟踪,具有很强的鲁棒性和适应性。在实际应用中,SiamMOT已经被广泛应用于视频监控、自动驾驶等领域。 ### 回答2: SiamMOT是指SiamMOT算法,是一种基于SiamRPN++和深度学习的多目标追踪算法。它主要通过在目标检测的基础上,根据目标的视觉特征进行跟踪,实现对多个目标同时进行跟踪的功能。 SiamMOT算法采用Siamese网络结构,该网络结构以两个相同的子网络组成,用于学习目标的特征。子网络通过共享权重,实现对同一个目标的不同视角的特征提取。通过特征提取,SiamMOT能够把同一目标的特征映射到相同的空间中,从而实现目标跟踪。 SiamMOT算法主要包含三个主要的步骤:第一步是目标检测,利用目标检测算法进行目标的初步识别,获取目标的位置和尺寸信息;第二步是特征提取,通过Siamese网络提取目标的特征,将不同视角下的特征映射到相同的空间中;第三步是目标跟踪,根据目标的特征匹配策略,利用目标的运动信息和外观特征进行目标的连续跟踪。 SiamMOT算法具有高效、准确的特点,能够在复杂背景下跟踪多个目标,并且能够实现实时运行。它在视频监控、自动驾驶、行人跟踪等领域有着广泛的应用前景,为目标跟踪研究提供了有效的方法和思路。 ### 回答3: SiamMot是一种基于SiamNet的多目标跟踪算法。SiamNet是一种基于孪生网络的方式,用于目标跟踪任务。在SiamMot中,孪生网络首先用于提取目标的特征向量。这些特征向量能够捕捉到目标的关键信息,例如目标的外观和运动。然后,通过计算特征向量之间的相似度,可以将目标在连续帧中进行匹配。 SiamMot采用了一种离线训练和在线跟踪的方式。在训练阶段,使用大量的视频序列进行训练,以学习目标的特征和运动模式。在跟踪阶段,根据目标在第一帧中的位置,使用SiamNet提取目标的特征向量,并与后续帧中的特征进行匹配。通过计算特征之间的相似度,可以确定目标在连续帧中的位置。 相比传统的多目标跟踪算法,SiamMot具有许多优势。首先,它能够在复杂的场景中实现准确的目标跟踪。其次,SiamMot在目标外观变化和运动模式变化的情况下都具有较好的适应性。此外,SiamMot具有较高的实时性能,能够处理高帧率的视频流。 总之,SiamMot是一种基于SiamNet的多目标跟踪算法,通过提取目标的特征向量,并计算特征之间的相似度,实现准确且稳定的目标跟踪。这种算法在目标追踪领域具有广泛的应用前景。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ng_T

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值