【YOLOv10改进】CAFM(Convolution and Attention Fusion Module):卷积和注意力融合模块 | 小目标

YOLOv10目标检测创新改进与实战案例专栏

改进目录: YOLOv10有效改进系列及项目实战目录:卷积,主干 注意力,检测头等创新机制

专栏链接: YOLOv10 创新改进有效涨点

介绍

image-20240529204407145

摘要

摘要——高光谱图像(HSI)去噪对于高光谱数据的有效分析和解释至关重要。然而,同时建模全局和局部特征以增强HSI去噪的研究却很少。在本文中,我们提出了一种混合卷积和注意力网络(HCANet),该网络结合了卷积神经网络(CNN)和Transformers的优势。为了增强全局和局部特征的建模,我们设计了一个卷积和注意力融合模块,旨在捕捉长距离依赖关系和邻域光谱相关性。此外,为了改进多尺度信息聚合,我们设计了一个多尺度前馈网络,通过在不同尺度上提取特征来增强去噪性能。在主流HSI数据集上的实验结果表明,所提出的HCANet具有合理性和有效性。所提出的模型在去除各种复杂噪声方面表现出色。我们的代码可在https://github.com/summitgao/HCANet获得。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

这篇文章介绍了一种名为Hybrid Convolutional and Attention Network (HCANet)的模型,用于高光谱图像去噪。该模型结合了卷积神经网络和Transformer的优势,以有效地去除高光谱图像中的噪声。文章提出了注意力机制,用于捕获远程依赖性和邻域光谱相关性,以增强全局和局部特征建模。通过设计卷积和注意力融合模块以及多尺度前馈网络,该模型能够在不同尺度提取特征,从而提高去噪性能。

  1. 结构概述:HCANet采用了U型网络结构,其中包含多个Convolution Attention Mixing(CAMixing)块。每个CAMixing块由两部分组成:卷积和注意力融合模块(CAFM)以及多尺度前馈网络(MSFN)。

  2. CAFM模块:在CAFM模块中,局部分支利用卷积和通道重排来提取局部特征,全局分支则利用注意力机制来捕获长距离依赖关系。这种结合了卷积和注意力的设计使得模型能够综合建模全局和局部特征,从而提高去噪性能。

  3. MSFN模块:MSF

### PSA 架构原理图解释 PSA(Platform Security Architecture)是一种由 Arm 提供的安全架构设计框架,其核心目标是为物联网设备其他嵌入式系统构建统一的安全解决方案。该架构通过分层的方式定义了一套完整的安全模型,涵盖了硬件、固件以及软件层面的设计原则。 #### 安全模型的核心组成部分 PSA 的安全模型主要分为三个层次:分析阶段、实现阶段评估阶段[^1]。这些阶段共同构成了一个闭环的安全保障流程: 1. **威胁建模 (TMSA)** TMSA 是 Threat Model and Security Analysis 的缩写,用于识别系统的潜在威胁并对其进行分类。这一部分帮助开发者理解可能存在的攻击向量及其影响范围。 2. **功能规范 (FSP)** FSP 即 Functional Specification for Platform Security,它描述了如何应对上述威胁的具体措施。此文档提供了关于加密服务、密钥管理以及其他安全特性的详细说明。 3. **实施指南 (IMP)** IMP 指 Implementation Guide,具体阐述了如何在实际开发环境中部署前述的功能规范。这一步骤涉及具体的编码实践技术选型。 #### PSA 原理图的关键要素 以下是 PSA 架构原理图中的几个重要概念及其作用: - **隔离区划分** PSA 将整个系统划分为两个独立区域——受信任执行环境 (TEE) 非受信任执行环境 (NTEE)。这种分区策略确保敏感数据始终运行在一个高度保护的空间内,从而降低被外部恶意程序访问的风险。 - **通信通道保护** 在不同组件之间传递消息时采用端到端加密技术来防止窃听或篡改行为发生。例如,在 YOLOv8 中引入的 PSA 注意力机制也体现了类似的思路,即增强局部特征表达的同时保持全局上下文一致性[^2]。 - **生命周期管理** 设备从生产制造到退役报废期间都需要遵循严格的管理制度以维护整体安全性。其中包括初始配置设置、远程更新验证等功能模块。 #### 实现细节举例 下面展示一段基于 PyTorch 的代码片段,演示如何将 PSA 思想融入神经网络检测器中: ```python import torch.nn as nn class DetectPSA(nn.Module): def __init__(self, nc=80, anchors=()): super(DetectPSA, self).__init__() # 初始化参数... self.psa_module = PSAModule() # 添加 PSA 模块 def forward(self, x): out = self.psa_module(x) # 调用 PSA 处理输入张量 return out # 返回处理后的结果 ``` 以上代码展示了如何扩展传统的目标检测算法使其具备更强的数据防护能力。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值