YOLOv10目标检测创新改进与实战案例专栏
改进目录: YOLOv10有效改进系列及项目实战目录:卷积,主干 注意力,检测头等创新机制
专栏链接: YOLOv10 创新改进有效涨点
介绍
摘要
摘要——高光谱图像(HSI)去噪对于高光谱数据的有效分析和解释至关重要。然而,同时建模全局和局部特征以增强HSI去噪的研究却很少。在本文中,我们提出了一种混合卷积和注意力网络(HCANet),该网络结合了卷积神经网络(CNN)和Transformers的优势。为了增强全局和局部特征的建模,我们设计了一个卷积和注意力融合模块,旨在捕捉长距离依赖关系和邻域光谱相关性。此外,为了改进多尺度信息聚合,我们设计了一个多尺度前馈网络,通过在不同尺度上提取特征来增强去噪性能。在主流HSI数据集上的实验结果表明,所提出的HCANet具有合理性和有效性。所提出的模型在去除各种复杂噪声方面表现出色。我们的代码可在https://github.com/summitgao/HCANet获得。
文章链接
论文地址:论文地址
代码地址:代码地址
基本原理
这篇文章介绍了一种名为Hybrid Convolutional and Attention Network (HCANet)的模型,用于高光谱图像去噪。该模型结合了卷积神经网络和Transformer的优势,以有效地去除高光谱图像中的噪声。文章提出了注意力机制,用于捕获远程依赖性和邻域光谱相关性,以增强全局和局部特征建模。通过设计卷积和注意力融合模块以及多尺度前馈网络,该模型能够在不同尺度提取特征,从而提高去噪性能。
-
结构概述:HCANet采用了U型网络结构,其中包含多个Convolution Attention Mixing(CAMixing)块。每个CAMixing块由两部分组成:卷积和注意力融合模块(CAFM)以及多尺度前馈网络(MSFN)。
-
CAFM模块:在CAFM模块中,局部分支利用卷积和通道重排来提取局部特征,全局分支则利用注意力机制来捕获长距离依赖关系。这种结合了卷积和注意力的设计使得模型能够综合建模全局和局部特征,从而提高去噪性能。
-
MSFN模块:MSF