目录
https://blog.csdn.net/weixin_45792450/article/details/109314584
抽样分布
总体的分布往往是未知的,或是部分地未知的.根据实际问题的需要,有时需对总体未知的重要数字特征(如总体数学期望、总体方差)或总体分布中所含的未知参数进行统计推断.这类问题称为参数统计推断。
在参数统计推断问题中,经常需要利用总体的样本构造出合适的统计量,并使其服从或渐近地服从已知的确定分布,统计学中泛称统计量的分布为抽样分布。
正态分布性质
-
设随机变量 X X X服从正态分布 N ( μ , σ 2 ) N(\mu ,{\sigma ^2}) N(μ,σ2),则 X − μ σ ∼ N ( 0 , 1 ) {{X - \mu } \over \sigma } \sim N(0,1) σX−μ∼N(0,1),即正态分布可以标准化。
-
设随机变量 X X X服从正态分布 N ( μ , σ 2 ) N(\mu ,{\sigma ^2}) N(μ,σ2),则 E ( X ) = μ , D ( X ) = σ 2 E(X) = \mu ,D(X) = {\sigma ^2} E(X)=μ,D(X)=σ2
单正态总体的抽样分布
定理:设总体 X X X服从正态分布 N ( μ , σ 2 ) N(\mu ,{\sigma ^2}) N(μ,σ2), ( X 1 , X 2 , . . . , X n ) ({X_1},{X_2},...,{X_n}) (X1,X2,...,Xn)是其容量为 n n n的一个样本, X ˉ \bar X Xˉ与 S 2 {S^2} S2分别为此样本的样本均值与方差,则有:
-
X ˉ ∼ N ( μ , σ 2 n ) \bar X \sim N(\mu ,{{{\sigma ^2}} \over n}) Xˉ∼N(μ,nσ2)
-
n − 1 σ 2 S 2 ∼ χ 2 ( n − 1 ) {{n - 1} \over {{\sigma ^2}}}{S^2} \sim {\chi ^2}(n - 1) σ2n−1S2∼χ2(n−1)
-
X ˉ \bar X Xˉ与 S 2 {S^2} S2相互独立
证明:1性质根据正态分布的线性组合还是正态分布即可得出,2和3性质由于证明较复杂,从略。
定理:设 ( X 1 , X 2 , . . . , X n ) ({X_1},{X_2},...,{X_n}) (X1,X2,...,Xn)为正态总体 X ∼ N ( μ , σ 2 ) X \sim N(\mu ,{\sigma ^2}) X∼N(μ,σ2)的样本, X ˉ \bar X Xˉ与 S 2 {S^2} S2分别为该样本的均值和方差,则有:
- U = X ˉ − μ σ / n ∼ N ( 0 , 1 ) U = {{\bar X - \mu } \over {\sigma /\sqrt n }} \sim N(0,1) U=σ/nXˉ−μ∼N(0,1)
- n − 1 σ 2 S 2 ∼ χ 2 ( n − 1 ) {{n - 1} \over {{\sigma ^2}}}{S^2} \sim {\chi ^2}(n - 1) σ2n−1S2∼χ2(n−1)
- T = X ˉ − μ S / n ∼ t ( n − 1 ) T = {{\bar X - \mu } \over {S/\sqrt n }} \sim t(n - 1) T=S/nXˉ−μ∼t(n−1)
证明:1性质即为正态分布的标准化,3性质由1和2联立代入即可得出 t t t分布形式
双正态总体的抽样分布
定理:设总体 X ∼ N ( μ , σ 2 ) X \sim N(\mu ,{\sigma ^2}) X∼N(μ,σ2), Y ∼ N ( μ , σ 2 ) Y \sim N(\mu ,{\sigma ^2}) Y∼N(μ,σ2), ( X 1 , X 2 , . . . , X n 1 ) ({X_1},{X_2},...,{X_{{n_1}}}) (X1,X2,...,Xn1)与 ( Y 1 , Y 2 , . . . , Y n 2 ) ({Y_1},{Y_2},...,{Y_{{n_2}}}) (Y1,Y2,...,Yn2)分别是来自 X X X和 Y Y Y的样本,样本均值分别为 X ˉ \bar X Xˉ和 Y ˉ \bar Y Yˉ,样本方差分别为 S 1 2 S_1^2 S12和 S 2 2 S_2^2 S22,则有:
- X ˉ − Y ˉ ∼ N ( μ 1 − μ 2 , σ 1 2 n 1 + σ 2 2 n 2 ) \bar X - \bar Y \sim N({\mu _1} - {\mu _2},{{\sigma _1^2} \over {{n_1}}} + {{\sigma _2^2} \over {{n_2}}}) Xˉ−Yˉ∼N(μ1−μ2,n1σ12+n2σ22), U = ( X ˉ − Y ˉ ) − ( μ 1 − μ 2 ) σ 1 2 n 1 + σ 2 2 n 2 ∼ N ( 0 , 1 ) U = {{(\bar X - \bar Y) - ({\mu _1} - {\mu _2})} \over {\sqrt {{{\sigma _1^2} \over {{n_1}}} + {{\sigma _2^2} \over {{n_2}}}} }} \sim N(0,1) U=n1σ12+n2σ22(Xˉ−Yˉ)−(μ1−μ2)∼N(0,1)
- F = S 1 2 / σ 1 2 S 2 2 / σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) F = {{S_1^2/\sigma _1^2} \over {S_2^2/\sigma _2^2}} \sim F({n_1} - 1,{n_2} - 1) F=S22/σ22S12/σ12∼F(n1−1,n2−1)