基于YOLO的自动驾驶目标检测研究综述

本文综述了YOLO算法在自动驾驶领域的应用,包括交通标志、交通灯、车辆和行人的检测,强调了YOLO算法在实时性和精度上的平衡。针对不同目标,研究者通过数据增强、损失函数优化等方式提升检测性能,为自动驾驶的安全性提供保障。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:自动驾驶是人工智能发展领域的一个重要方向,拥有良好的发展前景,而实时准确的目标检测与识别是保证自动驾驶汽车安全稳定运行的基础与关键。回顾自动驾驶和目标检测技术的发展历程,综述了YOLO算法在车辆、行人、交通标志、灯光、车道线等目标检测上的应用,同时对比分析了精确性与实时性等性能,阐述了自动驾驶目标检测研究领域将要面临的挑战、可能的解决方案和潜在的发展方向。
关键词:自动驾驶;目标检测;YOLO算法

交通是一个国家经济发展的重要基础产业。随着人们生活水平的提高,汽车已经成为人们日常出行的重要交通工具。据公安部统计,2021 年我国汽车保有量达3.02 亿辆[1]。但汽车提供方便的同时,全国的交通事故数量居高不下,据估计,90%的车祸是由人为失误造成的[2]。传统汽车驾驶需要驾驶者高度集中注意力,时刻注意周围环境的变换,然而疲劳、噪音、天气、心理等多方面因素都会影响驾驶者的判断,进而可能产生危险。作为未来汽车的发展方向,自动驾驶汽车拥有自主判断能力,能较大程度地减少人为失误。同时,自动驾驶汽车能更好地节能减排、减少污染[3],有良好的应用前景。
为使自动驾驶汽车能够安全稳定地运行在道路上,对于参与道路交通的各类目标,如:车辆、行人、交通标志、灯光、车道线等,自动驾驶车辆都需要做出实时精确的检测以及判断。对实时目标的精准检测、识别并做出判断是保证其运行的基础与核心。
目前,国内外学者围绕自动驾驶技术做了不同领域的综述,邓伟文等[4]综述了自动驾驶测试领域自动生成仿真场景的方法,吕品等[5]综述了自动驾驶数据处理的边缘计算技术,Zamanakos 等[6]对基于激光雷达的目标检测进行了综述。本文则围绕深度学习的YOLO系列算法在自动驾驶目标检测识别中的应用进行综述,并对其在提升实时检测的效率与精度方面做出相应的总结与展望。

1 自动驾驶简述

自动驾驶汽车中的自动驾驶系统是多技术融合的产物。所谓自动驾驶即通过多种车载传感器(如摄像头、激光雷达、毫米波雷达、GPS、惯性传感器等)来识别车辆所处的周边环境和状态,并根据所获得的环境信息(包括道路信息、交通信息、车辆位置和障碍物信息等)自主做出分析和判断,从而自主地控制车辆运动,最终实现自动驾驶[7]。根据车辆的智能性程度,2021 年8 月20 日,工信部批准发布了GB/T 40429—2021《汽车驾驶自动化分级》标准[8]。该标准将自动驾驶划分为L0~L5 等级,具体分级标准如表1 所示。
20 世纪80 年代,卡内基梅隆大学提出了最早的在结构化环境中驾驶的自动驾驶汽车项目[9],以及慕尼黑联邦大学提出高速公路驾驶项目[10]。1986 年,全球第一辆由计算机驾驶的汽车NavLab1 诞生,1992 年,国防科技大学成功研制出中国第一辆无人驾驶汽车[11]。此后,DARPA大挑战[12-13]等项目不断推动自动驾驶的技术向前发展。
在学术界之外,汽车制造商和科技公司也开展了研究,开发自己的自动驾驶汽车。2000 年,美国通用汽车开发了一套自动碰撞预警/防止系统,夜视和后视报警系统的应用使得汽车具备L0 的应急辅助功能[14]。各种高级驾驶辅助系统,如自适应巡航控制(adaptivecruise control,ACC)、车道保持辅助和车道偏离警告技术,为现代汽车提供了部

### YOLO目标检测技术综述 #### 工作原理 YOLO(You Only Look Once)是一种实时对象检测算法,它将输入图像划分为网格结构并预测边界框及其类别概率。对于每个网格单元,YOLO会预测多个边界框以及这些框内物体存在的置信度得分。该方法通过单次前向传播完成整个过程,从而实现了快速而高效的检测。 YOLO的核心特点在于其统一的框架设计:不仅能够同时处理不同尺度的对象,而且可以端到端训练神经网络来优化所有组件之间的协调工作[^2]。 ```python import torch from torchvision.models.detection import fasterrcnn_resnet50_fpn, yolo_v3_darknet53 model = yolo_v3_darknet53(pretrained=True) ``` #### 实现方式 YOLO采用了一种称为Darknet的卷积神经网络作为骨干网路,并在此基础上构建了专门用于目标检测的任务特定层。具体来说: - **特征提取**:使用一系列卷积层和池化操作从原始图片中抽取有用的视觉模式; - **区域建议生成**:不同于传统的两阶段方法(如R-CNN系列),YOLO直接在网络末端附加额外的全连接层来进行候选框预测; - **分类与回归联合损失函数**:引入了一个复合型的成本函数,既考虑到了位置误差也兼顾了类别标签准确性; 这种紧凑的设计使得YOLO能够在保持较高精度的同时实现极高的推理速度[^1]。 #### 应用场景 随着版本迭代和技术进步,YOLO已被广泛应用于多种实际环境中,特别是在那些对实时性和计算资源敏感的应用场合表现出色。例如,在自动驾驶汽车、无人机监控系统等领域,YOLO凭借其实时性强的优势成为首选方案之一。此外,在安防监控视频分析方面也有着不可替代的作用。 针对多光谱成像应用,YOLO架构经过适当调整后同样展现了良好的适应能力。通过对原有模型进行针对性改造——比如增加通道数以支持更多波段的数据输入——可以在诸如农业监测、环境评估等行业发挥重要作用。 #### 最新进展 近年来围绕YOLO展开了一系列创新尝试,旨在进一步提升性能指标或拓展适用范围。一方面,研究人员不断探索更有效的网络结构改进措施,如SPP模块、PANet路径聚合机制等;另一方面,则致力于解决跨域泛化难题,即让预训练好的模型更好地迁移到新的任务上而不需大量标注样本的支持。值得注意的是,基于YOLO的多光谱目标检测正逐渐成为一个新兴热点话题,涉及新型传感器集成、高效数据融合策略等方面的研究成果层出不穷。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

电气_空空

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值