数
整数
…, − 3 -3 −3, − 2 -2 −2, − 1 -1 −1, 0 0 0, 1 1 1, 2 2 2, 3 3 3,…
有理数
两个整数的比:
r
=
m
n
r = \frac{m}{n}
r=nm,其中
n
n
n不等于0。
举例:
1
2
\frac{1}{2}
21
−
3
7
-\frac{3}{7}
−73
46
=
46
1
46 = \frac{46}{1}
46=146
0.17
=
17
100
0.17=\frac{17}{100}
0.17=10017
无理数
无法写作两个整数的比。
举例:
3
5
2
3
π
sin
1
∘
log
10
2
\sqrt{3} \sqrt{5} \sqrt[3]{2} \pi \sin1^{\circ} {\log_{10} 2}
3532πsin1∘log102
区间
不等式
- If a < b a < b a<b, then a + c < b + c a + c < b + c a+c<b+c.
- If a < b a < b a<b and c < d c < d c<d, then a + c < b + d a + c < b + d a+c<b+d.
- If a < b a < b a<b and c > 0 c > 0 c>0, then a c < b c ac < bc ac<bc.
- If a < b a < b a<b and c < 0 c < 0 c<0, then a c > b c ac > bc ac>bc.
- If 0 < a < b 0 < a < b 0<a<b, then 1 a > 1 b \frac{1}{a} > \frac{1}{b} a1>b1.
绝对值
假设 a a a和 b b b是实数,且 n n n是整数。那么:
- ∣ a b ∣ = ∣ a ∣ ∣ b ∣ |ab|=|a||b| ∣ab∣=∣a∣∣b∣.
- ∣ a b ∣ = ∣ a ∣ ∣ b ∣ |\frac{a}{b}|=\frac{|a|}{|b|} ∣ba∣=∣b∣∣a∣ ( b ≠ 0 b\neq0 b=0).
-
∣
a
n
∣
=
∣
a
∣
n
|a^n|=|a|^n
∣an∣=∣a∣n.
假设 a > 0 a > 0 a>0。那么 - ∣ x ∣ = a |x|=a ∣x∣=a 当且仅当 x = ± a x=\pm a x=±a.
- ∣ x ∣ < a |x|<a ∣x∣<a 当且仅当 − a < x < a -a < x < a −a<x<a.
- ∣ x ∣ > a |x|>a ∣x∣>a 当且仅当 x < − a x < -a x<−a or a < x a < x a<x.