微积分-函数与极限4(极限定律)

极限定律

  1. 假设 a a a是一个常量以及有极限
    lim ⁡ x → a f ( x ) \lim_{x \rightarrow a}f(x) xalimf(x) lim ⁡ x → a g ( x ) \lim_{x \rightarrow a}g(x) xalimg(x)
    那么
    1. lim ⁡ x → a [ f ( x ) + g ( x ) ] = lim ⁡ x → a f ( x ) + lim ⁡ x → a g ( x ) \lim_{x \rightarrow a}[f(x) + g(x)] = \lim_{x \rightarrow a}f(x) + \lim_{x \rightarrow a}g(x) limxa[f(x)+g(x)]=limxaf(x)+limxag(x)
    2. lim ⁡ x → a [ f ( x ) − g ( x ) ] = lim ⁡ x → a f ( x ) − lim ⁡ x → a g ( x ) \lim_{x \rightarrow a}[f(x) - g(x)] = \lim_{x \rightarrow a}f(x) - \lim_{x \rightarrow a}g(x) limxa[f(x)g(x)]=limxaf(x)limxag(x)
    3. lim ⁡ x → a [ c f ( x ) ] = c lim ⁡ x → a f ( x ) \lim_{x \rightarrow a}[cf(x)] = c\lim_{x \rightarrow a}f(x) limxa[cf(x)]=climxaf(x)
    4. lim ⁡ x → a [ f ( x ) g ( x ) ] = lim ⁡ x → a f ( x ) ⋅ lim ⁡ x → a g ( x ) \lim_{x \rightarrow a}[f(x)g(x)] = \lim_{x \rightarrow a}f(x) \cdot \lim_{x \rightarrow a}g(x) limxa[f(x)g(x)]=limxaf(x)limxag(x)
    5. lim ⁡ x → a f ( x ) g ( x ) = lim ⁡ x → a f ( x ) lim ⁡ x → a g ( x ) \lim_{x \rightarrow a}\frac{f(x)}{g(x)} = \frac{\lim_{x \rightarrow a}f(x)}{\lim_{x \rightarrow a}g(x)} limxag(x)f(x)=limxag(x)limxaf(x)
    6. lim ⁡ x → a [ f ( x ) ] n = [ lim ⁡ x → a f ( x ) ] n \lim_{x \rightarrow a}[f(x)]^n = [\lim_{x \rightarrow a}f(x)]^n limxa[f(x)]n=[limxaf(x)]n
    7. lim ⁡ x → a c = c \lim_{x \rightarrow a}c = c limxac=c
    8. lim ⁡ x → a x = a \lim_{x \rightarrow a}x = a limxax=a
    9. lim ⁡ x → a x n = a n \lim_{x \rightarrow a}x^n = a^n limxaxn=an
    10. lim ⁡ x → a x n = a n \lim_{x \rightarrow a}\sqrt[n]{x} = \sqrt[n]{a} limxanx =na
    11. lim ⁡ x → a f ( x ) n = lim ⁡ x → a f ( x ) n \lim_{x \rightarrow a}\sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \rightarrow a}f(x)} limxanf(x) =nlimxaf(x)
  2. 例一
    已知函数 f f f g g g的图像,计算下面方程的极限。
    (a) lim ⁡ x → − 2 [ f ( x ) + 5 g ( x ) ] \lim_{x \rightarrow -2}[f(x) + 5g(x)] limx2[f(x)+5g(x)]
    (b) lim ⁡ x → 1 [ f ( x ) g ( x ) ] \lim_{x \rightarrow 1}[f(x)g(x)] limx1[f(x)g(x)]
    (c) lim ⁡ x → 2 f ( x ) g ( x ) \lim_{x \rightarrow 2}\frac{f(x)}{g(x)} limx2g(x)f(x)
    在这里插入图片描述
  3. 例二
    计算下列方程的极限
    (a) lim ⁡ x → 5 ( 2 x 2 − 3 x + 4 ) \lim_{x \rightarrow 5}(2x^2 - 3x + 4) limx5(2x23x+4)
    (b) lim ⁡ x → − 2 x 3 + 2 x 2 − 1 5 − 3 x \lim_{x \rightarrow -2}\frac{x^3 + 2x^2 - 1}{5 - 3x} limx253xx3+2x21

直接带入性质

  1. 如果函数 f f f是一个多项式或有理函数,并且 a a a属于 f f f的定义域,那么
    lim ⁡ x → a f ( x ) = f ( a ) \lim_{x \rightarrow a}f(x) = f(a) xalimf(x)=f(a)
  2. 例三
    lim ⁡ x → 1 x 2 − 1 x − 1 \lim_{x \rightarrow 1}\frac{x^2 - 1}{x - 1} limx1x1x21
    解:首先将分子分解为平方差
    x 2 − 1 x − 1 = ( x + 1 ) ( x − 1 ) x − 1 \frac{x^2 - 1}{x - 1} = \frac{(x + 1)(x - 1)}{x - 1} x1x21=x1(x+1)(x1)
    根据极限的定义,我们知道 x x x趋于 1 1 1 x ≠ 1 x \neq 1 x=1。因此可以消除公因数 x − 1 x - 1 x1,再使用直接带入进行计算:
    lim ⁡ x → 1 x 2 − 1 x − 1 = ( x + 1 ) ( x − 1 ) x − 1 = lim ⁡ x → 1 ( x + 1 ) = 1 + 1 = 2 \begin{aligned}\lim_{x \rightarrow 1}\frac{x^2 - 1}{x - 1} &= \frac{(x + 1)(x - 1)}{x - 1}\\ &= \lim_{x \rightarrow 1}(x + 1) \\ &= 1 + 1 = 2\end{aligned} x1limx1x21=x1(x+1)(x1)=x1lim(x+1)=1+1=2
  3. 例四
    已知方程,求 lim ⁡ x → 1 g ( x ) \lim_{x \rightarrow 1}g(x) limx1g(x)
    g ( x ) = { x + 1 ( x ≠ 1 ) π ( x = 1 ) g(x) = \left\{ \begin{aligned} & x + 1 & (x \neq 1) \\ & \pi & (x = 1)\\ \end{aligned} \right. g(x)={x+1π(x=1)(x=1)
    解:虽然 g ( 1 ) = π g(1) = \pi g(1)=π,但是极限的值并不依赖函数在 1 1 1处的值,极限的值是取 x x x趋于 1 1 1 x ≠ 1 x \neq 1 x=1的值,因此
    lim ⁡ x → 1 g ( x ) = lim ⁡ x → 1 ( x + 1 ) = 2 \lim_{x \rightarrow 1}g(x) = \lim_{x \rightarrow 1}(x + 1) = 2 x1limg(x)=x1lim(x+1)=2

定理

  1. 1. lim ⁡ x → a f ( x ) = L \lim_{x \rightarrow a}f(x) = L limxaf(x)=L,当且仅当 lim ⁡ x → a − f ( x ) = L = lim ⁡ x → a + f ( x ) \lim_{x \rightarrow a^-}f(x) = L = \lim_{x \rightarrow a^+}f(x) limxaf(x)=L=limxa+f(x)
    2. 如果 f ( x ) ≤ g ( x ) f(x) \leq g(x) f(x)g(x),并且它们在 x x x趋于 a a a处的极限都存在,那么
    lim ⁡ x → a f ( x ) ≤ lim ⁡ x → a g ( x ) \lim_{x \rightarrow a}f(x) \leq \lim_{x \rightarrow a}g(x) xalimf(x)xalimg(x)
    3. 如果 f ( x ) ≤ g ( x ) ≤ h ( x ) f(x) \leq g(x) \leq h(x) f(x)g(x)h(x),并且
    lim ⁡ x → a f ( x ) = lim ⁡ x → a h ( x ) = L \lim_{x \rightarrow a}f(x) = \lim_{x \rightarrow a}h(x) = L xalimf(x)=xalimh(x)=L
    那么
    lim ⁡ x → a g ( x ) = L \lim_{x \rightarrow a}g(x) = L xalimg(x)=L
    如图所示
    在这里插入图片描述
  2. 举例
    证明 lim ⁡ x → 0 x 2 sin ⁡ 1 x = 0 \lim_{x \rightarrow 0}x^2\sin\frac{1}{x} = 0 limx0x2sinx1=0
    解:首先
    − 1 ≤ sin ⁡ 1 x ≤ 1 -1 \leq \sin\frac{1}{x} \leq 1 1sinx11
    其次我们知道不等式两边同时乘以正数时,不等式关系依然成立。而 x 2 ≥ 0 x^2 \geq 0 x20,所以两边同时乘以 x 2 x^2 x2,就有
    − x 2 ≤ x 2 sin ⁡ 1 x ≤ x 2 -x^2 \leq x^2\sin\frac{1}{x} \leq x^2 x2x2sinx1x2
    并且我们知道
    lim ⁡ x → 0 x 2 = 0 \lim_{x \rightarrow 0}x^2 = 0 x0limx2=0
    lim ⁡ x → 0 − x 2 = 0 \lim_{x \rightarrow 0}-x^2 = 0 x0limx2=0
    所以,设 f ( x ) = − x 2 f(x) = -x^2 f(x)=x2 g ( x ) = x 2 sin ⁡ 1 x g(x) = x^2\sin\frac{1}{x} g(x)=x2sinx1 h ( x ) = x 2 h(x) = x^2 h(x)=x2,根据定理3,可得
    lim ⁡ x → 0 x 2 sin ⁡ 1 x = 0 \lim_{x \rightarrow 0}x^2\sin\frac{1}{x} = 0 x0limx2sinx1=0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值