引言
极限是什么?在生活中,我们常用其来形容人或者动物某种能力的上限,如动漫JOJO中迪奥说过“人类是有极限的”。在数学中,根据前面的极限直观定义,得知极限是“当 x x x趋于 a a a时,函数 f ( x ) f(x) f(x)趋于 L L L”。这个概念乍一看没有什么问题,但实际上过于口语化了,而数学是一门精确的语言。所以我们就要问了,到底 f ( x ) f(x) f(x)多么靠近 L L L,它们的差距是一呢,还是二呢,抑或是十万八千里?因此,我们迫切的需要极限的精确定义说明这个问题。
极限精确定义
1 假设
f
f
f是定义在某个包含
a
a
a的开区间上的函数(但可能在
a
a
a处没有定义)。如果对于任意
ε
>
0
\varepsilon > 0
ε>0,都存在
δ
>
0
\delta > 0
δ>0,使得当
0
<
∣
x
−
a
∣
<
δ
0 < |x - a| < \delta
0<∣x−a∣<δ时,有
∣
f
(
x
)
−
L
∣
<
ε
|f(x) - L| < \varepsilon
∣f(x)−L∣<ε。那么我们说当
x
x
x趋于
a
a
a时,
f
(
x
)
f(x)
f(x)的极限是
L
L
L,写作
lim
x
→
a
f
(
x
)
=
L
\lim_{x \rightarrow a}f(x) = L
x→alimf(x)=L
\qquad
用通俗话语来描述就是,
f
(
x
)
f(x)
f(x)离
L
L
L的距离想要有多近就可以有多近,只要
x
x
x足够靠近
a
a
a。
\qquad
并且因为
0
<
∣
x
−
a
∣
<
δ
0 < |x - a| < \delta
0<∣x−a∣<δ等同于
−
δ
<
x
−
a
<
δ
-\delta < x - a < \delta
−δ<x−a<δ,可以重写为
a
−
δ
<
x
<
δ
+
a
a - \delta < x < \delta + a
a−δ<x<δ+a。类似的,
∣
f
(
x
)
−
L
∣
<
ε
|f(x) - L| < \varepsilon
∣f(x)−L∣<ε可以重写为
L
−
ε
<
f
(
x
)
<
ε
+
L
L - \varepsilon < f(x) < \varepsilon + L
L−ε<f(x)<ε+L。因此,从区间这个角度上来说,定义1可以这样表述:
\qquad lim x → a f ( x ) = L \lim_{x \rightarrow a}f(x) = L limx→af(x)=L意味着对于任意 ε > 0 \varepsilon > 0 ε>0,存在 δ > 0 \delta > 0 δ>0使得当 x x x位于开区间 ( a − δ , a + δ ) (a - \delta, a + \delta) (a−δ,a+δ)时,那么 f ( x ) f(x) f(x)位于开区间 ( L − ε , L + ε ) (L - \varepsilon, L + \varepsilon) (L−ε,L+ε)。
如图所示
例一:已知 lim x → 1 ( x 3 − 5 x + 6 ) = 2 \lim_{x \rightarrow 1}(x^3 - 5x + 6) = 2 limx→1(x3−5x+6)=2,根据图像求 ε = 0.2 \varepsilon = 0.2 ε=0.2时, δ \delta δ的值。
例二:证明
lim
x
→
3
(
4
x
−
5
)
=
7
\lim_{x \rightarrow 3}(4x - 5) = 7
limx→3(4x−5)=7
解:
第一步,猜测
δ
\delta
δ的值。令
ε
>
0
\varepsilon > 0
ε>0,我们想找一个
δ
>
0
\delta > 0
δ>0,使得当
0
<
∣
x
−
3
∣
<
δ
0 < |x - 3| < \delta
0<∣x−3∣<δ时,有
∣
(
4
x
−
5
)
−
7
∣
<
ε
|(4x - 5) - 7| < \varepsilon
∣(4x−5)−7∣<ε。
\qquad
因为
∣
(
4
x
−
5
)
−
7
∣
=
∣
4
x
−
12
∣
=
4
∣
x
−
3
∣
|(4x - 5) - 7| = |4x - 12| = 4|x - 3|
∣(4x−5)−7∣=∣4x−12∣=4∣x−3∣。因此我们想找的
δ
\delta
δ满足:当
0
<
∣
x
−
3
∣
<
δ
0 < |x - 3| < \delta
0<∣x−3∣<δ时,有
4
∣
x
−
3
∣
<
ε
4|x - 3| < \varepsilon
4∣x−3∣<ε,也就是
∣
x
−
3
∣
<
ε
4
|x - 3| < \frac{\varepsilon}{4}
∣x−3∣<4ε。
\qquad
所以,我们取
δ
=
ε
4
\delta = \frac{\varepsilon}{4}
δ=4ε。
第二步,证明。给定任意
ε
>
0
\varepsilon > 0
ε>0,取
δ
=
ε
4
\delta = \frac{\varepsilon}{4}
δ=4ε。当
0
<
∣
x
−
3
∣
<
δ
0 < |x - 3| < \delta
0<∣x−3∣<δ时,就有
∣
(
4
x
−
5
)
−
7
∣
=
∣
4
x
−
12
∣
=
4
∣
x
−
3
∣
<
4
δ
=
ε
|(4x - 5) - 7| = |4x - 12| = 4|x - 3| < 4\delta = \varepsilon
∣(4x−5)−7∣=∣4x−12∣=4∣x−3∣<4δ=ε
因此,根据极限的定义有
lim
x
→
3
(
4
x
−
5
)
=
7
\lim_{x \rightarrow 3}(4x - 5) = 7
x→3lim(4x−5)=7
下面是对应的图像
左极限定义
任给
ε
>
0
\varepsilon > 0
ε>0,存在
δ
>
0
\delta > 0
δ>0,使得当
a
−
δ
<
x
<
a
a - \delta < x < a
a−δ<x<a时,有
∣
f
(
x
)
−
L
∣
<
ε
|f(x) - L| < \varepsilon
∣f(x)−L∣<ε。那么,我们说
f
(
x
)
f(x)
f(x)的左极限是
L
L
L,写作
lim
x
→
a
−
f
(
x
)
=
L
\lim_{x \rightarrow a^-}f(x) = L
x→a−limf(x)=L
右极限定义
任给
ε
>
0
\varepsilon > 0
ε>0,存在
δ
>
0
\delta > 0
δ>0,使得当
a
<
x
<
a
−
δ
a < x < a - \delta
a<x<a−δ时,有
∣
f
(
x
)
−
L
∣
<
ε
|f(x) - L| < \varepsilon
∣f(x)−L∣<ε。那么,我们说
f
(
x
)
f(x)
f(x)的右极限是
L
L
L,写作
lim
x
→
a
+
f
(
x
)
=
L
\lim_{x \rightarrow a^+}f(x) = L
x→a+limf(x)=L
举例:证明
lim
x
→
3
x
2
=
9
\lim_{x \rightarrow 3}x^2 = 9
limx→3x2=9。
解:
第一步,猜测
δ
\delta
δ的值。
∀
ε
>
0
,
∃
δ
>
0
\forall\varepsilon > 0, \exists\delta > 0
∀ε>0,∃δ>0使得当
0
<
∣
x
−
3
∣
<
δ
0 < |x - 3| < \delta
0<∣x−3∣<δ时,有
∣
x
2
−
9
∣
<
ε
|x^2 - 9| < \varepsilon
∣x2−9∣<ε。
\qquad
因为
∣
x
2
−
9
∣
=
∣
x
+
3
∣
∣
x
−
3
∣
|x^2 - 9| = |x + 3||x - 3|
∣x2−9∣=∣x+3∣∣x−3∣,所以当
0
<
∣
x
−
3
∣
<
δ
0 < |x - 3| < \delta
0<∣x−3∣<δ时,有
∣
x
+
3
∣
∣
x
−
3
∣
<
ε
|x + 3||x - 3| < \varepsilon
∣x+3∣∣x−3∣<ε。
\qquad
我们可以找到一个正数
C
>
∣
x
+
3
∣
C > |x + 3|
C>∣x+3∣,并且通过
∣
x
−
3
∣
<
ε
C
|x - 3| < \frac{\varepsilon}{C}
∣x−3∣<Cε,使得
C
∣
x
−
3
∣
<
ε
C|x - 3| < \varepsilon
C∣x−3∣<ε。
\qquad
因此选择
δ
=
ε
C
\delta = \frac{\varepsilon}{C}
δ=Cε。
\qquad
如果我们将
x
x
x限制在以
3
3
3为中心的某个区间内,我们就可以找到对应的
C
C
C。假设
x
x
x与
3
3
3的距离为
1
1
1,就有
∣
x
−
3
∣
<
1
⇒
2
<
x
<
4
⇒
5
<
x
+
3
<
7
⇒
∣
x
+
3
∣
<
7
|x - 3| < 1 \Rightarrow 2 < x < 4 \Rightarrow 5 < x + 3 < 7 \Rightarrow |x + 3| < 7
∣x−3∣<1⇒2<x<4⇒5<x+3<7⇒∣x+3∣<7,因此可以取
C
=
7
C = 7
C=7。
\qquad
现在在
∣
x
−
3
∣
|x - 3|
∣x−3∣有两个限制,分别为
∣
x
−
3
∣
<
1
|x - 3| < 1
∣x−3∣<1
∣
x
−
3
∣
<
ε
C
=
ε
7
|x - 3| < \frac{\varepsilon}{C}=\frac{\varepsilon}{7}
∣x−3∣<Cε=7ε
为了使两个限制都得到满足,我们取
δ
\delta
δ为两个数之间的更小值。用符号
δ
=
min
{
1
,
ε
7
}
\delta=\min\{1, \frac{\varepsilon}{7}\}
δ=min{1,7ε}。
第二步,证明。
∀
ε
>
0
,
∃
δ
=
min
{
1
,
ε
7
}
\forall\varepsilon > 0, \exists\delta = \min\{1, \frac{\varepsilon}{7}\}
∀ε>0,∃δ=min{1,7ε}。如果
0
<
∣
x
−
3
∣
<
δ
0 < |x - 3| < \delta
0<∣x−3∣<δ,那么
∣
x
−
3
∣
<
1
⇒
2
<
x
<
4
⇒
5
<
x
+
3
<
7
⇒
∣
x
+
3
∣
<
7
|x - 3| < 1 \Rightarrow 2 < x < 4 \Rightarrow 5 < x + 3 < 7 \Rightarrow |x + 3| < 7
∣x−3∣<1⇒2<x<4⇒5<x+3<7⇒∣x+3∣<7。
\qquad
并且有
∣
x
−
3
∣
<
ε
7
|x - 3| <\frac{\varepsilon}{7}
∣x−3∣<7ε。因此
∣
x
2
−
9
=
∣
x
+
3
∣
∣
x
−
3
∣
<
7
⋅
ε
7
=
ε
|x^2 - 9 = |x + 3||x - 3| < 7 \cdot \frac{\varepsilon}{7} = \varepsilon
∣x2−9=∣x+3∣∣x−3∣<7⋅7ε=ε
这表明
lim
x
→
3
x
2
=
9
\lim_{x \rightarrow 3}x^2 = 9
limx→3x2=9。
从上面的例子可以看出,对于一些复杂函数的极限的证明需要极大的创造力。不过幸运的是,我们可以根据上一节已经被证明的极限定理求出函数的极限,不需要去证明它。
无穷极限定义
- 正无穷极限定义:对于任意的正数
M
M
M都存在正数
δ
\delta
δ,使得当
0
<
∣
x
−
a
∣
<
δ
0 < |x - a| < \delta
0<∣x−a∣<δ时,有
f
(
x
)
>
M
f(x) > M
f(x)>M。记作
lim x → a f ( x ) = ∞ \lim_{x \rightarrow a}f(x) = \infty x→alimf(x)=∞
如图所示
举例:证明 lim x → 0 1 x 2 = ∞ \lim_{x \rightarrow 0}\frac{1}{x^2} = \infty limx→0x21=∞
解:
第一步,找出 δ \delta δ。 ∀ M > 0 , ∃ δ > 0 \forall M > 0, \exists \delta > 0 ∀M>0,∃δ>0,使得当 0 < ∣ x − 0 ∣ < δ 0 < |x - 0| < \delta 0<∣x−0∣<δ时,有 1 x 2 > M \frac{1}{x^2} > M x21>M。化简 x 2 < 1 M ⇒ ∣ x ∣ < 1 M x^2 < \frac{1}{M} \Rightarrow |x| < \frac{1}{\sqrt M} x2<M1⇒∣x∣<M1。所以取 δ = 1 M \delta = \frac{1}{\sqrt M} δ=M1。
第二步,证明。
∀
M
>
0
,
∃
δ
>
0
\forall M > 0, \exists \delta > 0
∀M>0,∃δ>0,使得当
0
<
∣
x
−
0
∣
<
δ
0 < |x - 0| < \delta
0<∣x−0∣<δ时,有
∣
x
∣
<
δ
⇒
x
2
<
δ
2
=
1
M
⇒
1
x
2
<
M
|x| < \delta \Rightarrow x^2 < \delta^2 = \frac{1}{M} \Rightarrow \frac{1}{x^2} < M
∣x∣<δ⇒x2<δ2=M1⇒x21<M
根据正无穷极限定义,可得
lim
x
→
0
1
x
2
=
∞
\lim_{x \rightarrow 0}\frac{1}{x^2} = \infty
x→0limx21=∞
- 负无穷极限定义:对于任意的负数
N
N
N都存在正数
δ
\delta
δ,使得当
0
<
∣
x
−
a
∣
<
δ
0 < |x - a| < \delta
0<∣x−a∣<δ时,有
f
(
x
)
<
N
f(x) < N
f(x)<N。记作
lim x → a f ( x ) = − ∞ \lim_{x \rightarrow a}f(x) = -\infty x→alimf(x)=−∞
如图所示
练习题
- 根据函数图像,找出
ε
=
0.1
,
ε
=
0.2
\varepsilon = 0.1, \varepsilon = 0.2
ε=0.1,ε=0.2所对应的
δ
\delta
δ。
lim x → 2 ( x 3 − 3 x + 4 ) = 6 \lim_{x \rightarrow 2}(x^3 - 3x + 4) = 6 x→2lim(x3−3x+4)=6 - 根据函数图像,找出同时满足下面条件的
δ
\delta
δ。
4 < x < 4 + δ 4 < x < 4 + \delta 4<x<4+δ
x 2 + 4 x − 4 > 100 \frac{x^2 + 4}{\sqrt{x - 4}} > 100 x−4x2+4>100 - 工程师需要制造一个面积为
1000
c
m
2
1000cm^2
1000cm2的圆形金属盘。
(a) 试问这个金属盘的半径应该是多少?
(b) 如果要使金属盘的面积误差在 ± 5 c m 2 \pm5cm^2 ±5cm2以内,请问半径需要满足什么条件才能达到?
(c) 根据极限定义,请问以上哪个代表 x x x?哪个代表 a a a?哪个代表 f ( x ) f(x) f(x)?哪个代表 L L L?哪个代表 ε \varepsilon ε?哪个代表 δ \delta δ? - 假设
lim
x
→
a
f
(
x
)
=
∞
\lim_{x \rightarrow a}f(x) = \infty
limx→af(x)=∞以及
lim
x
→
a
g
(
x
)
=
c
\lim_{x \rightarrow a}g(x) = c
limx→ag(x)=c,其中
c
c
c是一个实数,请证明。
(a) lim x → a [ f ( x ) + g ( x ) ] = ∞ \lim_{x \rightarrow a}[f(x) + g(x)] = \infty limx→a[f(x)+g(x)]=∞
(b) lim x → a [ f ( x ) g ( x ) ] = ∞ \lim_{x \rightarrow a}[f(x)g(x)]=\infty limx→a[f(x)g(x)]=∞ 如果 c > 0 c > 0 c>0
(c) lim x → a [ f ( x ) g ( x ) ] = − ∞ \lim_{x \rightarrow a}[f(x)g(x)]=-\infty limx→a[f(x)g(x)]=−∞ 如果 c < 0 c < 0 c<0