微积分-函数与极限5(极限的精确定义)

引言

极限是什么?在生活中,我们常用其来形容人或者动物某种能力的上限,如动漫JOJO中迪奥说过“人类是有极限的”。在数学中,根据前面的极限直观定义,得知极限是“当 x x x趋于 a a a时,函数 f ( x ) f(x) f(x)趋于 L L L”。这个概念乍一看没有什么问题,但实际上过于口语化了,而数学是一门精确的语言。所以我们就要问了,到底 f ( x ) f(x) f(x)多么靠近 L L L,它们的差距是一呢,还是二呢,抑或是十万八千里?因此,我们迫切的需要极限的精确定义说明这个问题。

极限精确定义

1 假设 f f f是定义在某个包含 a a a的开区间上的函数(但可能在 a a a处没有定义)。如果对于任意 ε > 0 \varepsilon > 0 ε>0,都存在 δ > 0 \delta > 0 δ>0,使得当 0 < ∣ x − a ∣ < δ 0 < |x - a| < \delta 0<xa<δ时,有 ∣ f ( x ) − L ∣ < ε |f(x) - L| < \varepsilon f(x)L<ε。那么我们说 x x x趋于 a a a时, f ( x ) f(x) f(x)的极限是 L L L,写作
lim ⁡ x → a f ( x ) = L \lim_{x \rightarrow a}f(x) = L xalimf(x)=L
\qquad 用通俗话语来描述就是, f ( x ) f(x) f(x) L L L的距离想要有多近就可以有多近,只要 x x x足够靠近 a a a
\qquad 并且因为 0 < ∣ x − a ∣ < δ 0 < |x - a| < \delta 0<xa<δ等同于 − δ < x − a < δ -\delta < x - a < \delta δ<xa<δ,可以重写为 a − δ < x < δ + a a - \delta < x < \delta + a aδ<x<δ+a。类似的, ∣ f ( x ) − L ∣ < ε |f(x) - L| < \varepsilon f(x)L<ε可以重写为 L − ε < f ( x ) < ε + L L - \varepsilon < f(x) < \varepsilon + L Lε<f(x)<ε+L。因此,从区间这个角度上来说,定义1可以这样表述:

\qquad lim ⁡ x → a f ( x ) = L \lim_{x \rightarrow a}f(x) = L limxaf(x)=L意味着对于任意 ε > 0 \varepsilon > 0 ε>0,存在 δ > 0 \delta > 0 δ>0使得当 x x x位于开区间 ( a − δ , a + δ ) (a - \delta, a + \delta) (aδ,a+δ)时,那么 f ( x ) f(x) f(x)位于开区间 ( L − ε , L + ε ) (L - \varepsilon, L + \varepsilon) (Lε,L+ε)

如图所示
在这里插入图片描述
在这里插入图片描述

例一:已知 lim ⁡ x → 1 ( x 3 − 5 x + 6 ) = 2 \lim_{x \rightarrow 1}(x^3 - 5x + 6) = 2 limx1(x35x+6)=2,根据图像求 ε = 0.2 \varepsilon = 0.2 ε=0.2时, δ \delta δ的值。

例二:证明 lim ⁡ x → 3 ( 4 x − 5 ) = 7 \lim_{x \rightarrow 3}(4x - 5) = 7 limx3(4x5)=7
解:
第一步,猜测 δ \delta δ的值。令 ε > 0 \varepsilon > 0 ε>0,我们想找一个 δ > 0 \delta > 0 δ>0,使得当 0 < ∣ x − 3 ∣ < δ 0 < |x - 3| < \delta 0<x3∣<δ时,有 ∣ ( 4 x − 5 ) − 7 ∣ < ε |(4x - 5) - 7| < \varepsilon (4x5)7∣<ε
\qquad 因为 ∣ ( 4 x − 5 ) − 7 ∣ = ∣ 4 x − 12 ∣ = 4 ∣ x − 3 ∣ |(4x - 5) - 7| = |4x - 12| = 4|x - 3| (4x5)7∣=∣4x12∣=4∣x3∣。因此我们想找的 δ \delta δ满足:当 0 < ∣ x − 3 ∣ < δ 0 < |x - 3| < \delta 0<x3∣<δ时,有 4 ∣ x − 3 ∣ < ε 4|x - 3| < \varepsilon 4∣x3∣<ε,也就是 ∣ x − 3 ∣ < ε 4 |x - 3| < \frac{\varepsilon}{4} x3∣<4ε
\qquad 所以,我们取 δ = ε 4 \delta = \frac{\varepsilon}{4} δ=4ε
第二步,证明。给定任意 ε > 0 \varepsilon > 0 ε>0,取 δ = ε 4 \delta = \frac{\varepsilon}{4} δ=4ε。当 0 < ∣ x − 3 ∣ < δ 0 < |x - 3| < \delta 0<x3∣<δ时,就有
∣ ( 4 x − 5 ) − 7 ∣ = ∣ 4 x − 12 ∣ = 4 ∣ x − 3 ∣ < 4 δ = ε |(4x - 5) - 7| = |4x - 12| = 4|x - 3| < 4\delta = \varepsilon (4x5)7∣=∣4x12∣=4∣x3∣<4δ=ε
因此,根据极限的定义有
lim ⁡ x → 3 ( 4 x − 5 ) = 7 \lim_{x \rightarrow 3}(4x - 5) = 7 x3lim(4x5)=7
下面是对应的图像

在这里插入图片描述

左极限定义

任给 ε > 0 \varepsilon > 0 ε>0,存在 δ > 0 \delta > 0 δ>0,使得当 a − δ < x < a a - \delta < x < a aδ<x<a时,有 ∣ f ( x ) − L ∣ < ε |f(x) - L| < \varepsilon f(x)L<ε。那么,我们说 f ( x ) f(x) f(x)的左极限是 L L L,写作
lim ⁡ x → a − f ( x ) = L \lim_{x \rightarrow a^-}f(x) = L xalimf(x)=L

右极限定义

任给 ε > 0 \varepsilon > 0 ε>0,存在 δ > 0 \delta > 0 δ>0,使得当 a < x < a − δ a < x < a - \delta a<x<aδ时,有 ∣ f ( x ) − L ∣ < ε |f(x) - L| < \varepsilon f(x)L<ε。那么,我们说 f ( x ) f(x) f(x)的右极限是 L L L,写作
lim ⁡ x → a + f ( x ) = L \lim_{x \rightarrow a^+}f(x) = L xa+limf(x)=L

举例:证明 lim ⁡ x → 3 x 2 = 9 \lim_{x \rightarrow 3}x^2 = 9 limx3x2=9
解:
第一步,猜测 δ \delta δ的值。 ∀ ε > 0 , ∃ δ > 0 \forall\varepsilon > 0, \exists\delta > 0 ε>0,δ>0使得当 0 < ∣ x − 3 ∣ < δ 0 < |x - 3| < \delta 0<x3∣<δ时,有 ∣ x 2 − 9 ∣ < ε |x^2 - 9| < \varepsilon x29∣<ε
\qquad 因为 ∣ x 2 − 9 ∣ = ∣ x + 3 ∣ ∣ x − 3 ∣ |x^2 - 9| = |x + 3||x - 3| x29∣=x+3∣∣x3∣,所以当 0 < ∣ x − 3 ∣ < δ 0 < |x - 3| < \delta 0<x3∣<δ时,有 ∣ x + 3 ∣ ∣ x − 3 ∣ < ε |x + 3||x - 3| < \varepsilon x+3∣∣x3∣<ε
\qquad 我们可以找到一个正数 C > ∣ x + 3 ∣ C > |x + 3| C>x+3∣,并且通过 ∣ x − 3 ∣ < ε C |x - 3| < \frac{\varepsilon}{C} x3∣<Cε,使得 C ∣ x − 3 ∣ < ε C|x - 3| < \varepsilon Cx3∣<ε
\qquad 因此选择 δ = ε C \delta = \frac{\varepsilon}{C} δ=Cε
\qquad 如果我们将 x x x限制在以 3 3 3为中心的某个区间内,我们就可以找到对应的 C C C。假设 x x x 3 3 3的距离为 1 1 1,就有 ∣ x − 3 ∣ < 1 ⇒ 2 < x < 4 ⇒ 5 < x + 3 < 7 ⇒ ∣ x + 3 ∣ < 7 |x - 3| < 1 \Rightarrow 2 < x < 4 \Rightarrow 5 < x + 3 < 7 \Rightarrow |x + 3| < 7 x3∣<12<x<45<x+3<7x+3∣<7,因此可以取 C = 7 C = 7 C=7
\qquad 现在在 ∣ x − 3 ∣ |x - 3| x3∣有两个限制,分别为
∣ x − 3 ∣ < 1 |x - 3| < 1 x3∣<1
∣ x − 3 ∣ < ε C = ε 7 |x - 3| < \frac{\varepsilon}{C}=\frac{\varepsilon}{7} x3∣<Cε=7ε
为了使两个限制都得到满足,我们取 δ \delta δ为两个数之间的更小值。用符号 δ = min ⁡ { 1 , ε 7 } \delta=\min\{1, \frac{\varepsilon}{7}\} δ=min{1,7ε}
第二步,证明。 ∀ ε > 0 , ∃ δ = min ⁡ { 1 , ε 7 } \forall\varepsilon > 0, \exists\delta = \min\{1, \frac{\varepsilon}{7}\} ε>0,δ=min{1,7ε}。如果 0 < ∣ x − 3 ∣ < δ 0 < |x - 3| < \delta 0<x3∣<δ,那么 ∣ x − 3 ∣ < 1 ⇒ 2 < x < 4 ⇒ 5 < x + 3 < 7 ⇒ ∣ x + 3 ∣ < 7 |x - 3| < 1 \Rightarrow 2 < x < 4 \Rightarrow 5 < x + 3 < 7 \Rightarrow |x + 3| < 7 x3∣<12<x<45<x+3<7x+3∣<7
\qquad 并且有 ∣ x − 3 ∣ < ε 7 |x - 3| <\frac{\varepsilon}{7} x3∣<7ε。因此
∣ x 2 − 9 = ∣ x + 3 ∣ ∣ x − 3 ∣ < 7 ⋅ ε 7 = ε |x^2 - 9 = |x + 3||x - 3| < 7 \cdot \frac{\varepsilon}{7} = \varepsilon x29=x+3∣∣x3∣<77ε=ε
这表明 lim ⁡ x → 3 x 2 = 9 \lim_{x \rightarrow 3}x^2 = 9 limx3x2=9

从上面的例子可以看出,对于一些复杂函数的极限的证明需要极大的创造力。不过幸运的是,我们可以根据上一节已经被证明的极限定理求出函数的极限,不需要去证明它。

无穷极限定义

  1. 正无穷极限定义:对于任意的正数 M M M都存在正数 δ \delta δ,使得当 0 < ∣ x − a ∣ < δ 0 < |x - a| < \delta 0<xa<δ时,有 f ( x ) > M f(x) > M f(x)>M。记作
    lim ⁡ x → a f ( x ) = ∞ \lim_{x \rightarrow a}f(x) = \infty xalimf(x)=
    如图所示
    在这里插入图片描述
    举例:证明 lim ⁡ x → 0 1 x 2 = ∞ \lim_{x \rightarrow 0}\frac{1}{x^2} = \infty limx0x21=
    解:
    第一步,找出 δ \delta δ ∀ M > 0 , ∃ δ > 0 \forall M > 0, \exists \delta > 0 M>0,δ>0,使得当 0 < ∣ x − 0 ∣ < δ 0 < |x - 0| < \delta 0<x0∣<δ时,有 1 x 2 > M \frac{1}{x^2} > M x21>M。化简 x 2 < 1 M ⇒ ∣ x ∣ < 1 M x^2 < \frac{1}{M} \Rightarrow |x| < \frac{1}{\sqrt M} x2<M1x<M 1。所以取 δ = 1 M \delta = \frac{1}{\sqrt M} δ=M 1

第二步,证明。 ∀ M > 0 , ∃ δ > 0 \forall M > 0, \exists \delta > 0 M>0,δ>0,使得当 0 < ∣ x − 0 ∣ < δ 0 < |x - 0| < \delta 0<x0∣<δ时,有
∣ x ∣ < δ ⇒ x 2 < δ 2 = 1 M ⇒ 1 x 2 < M |x| < \delta \Rightarrow x^2 < \delta^2 = \frac{1}{M} \Rightarrow \frac{1}{x^2} < M x<δx2<δ2=M1x21<M
根据正无穷极限定义,可得
lim ⁡ x → 0 1 x 2 = ∞ \lim_{x \rightarrow 0}\frac{1}{x^2} = \infty x0limx21=

  1. 负无穷极限定义:对于任意的负数 N N N都存在正数 δ \delta δ,使得当 0 < ∣ x − a ∣ < δ 0 < |x - a| < \delta 0<xa<δ时,有 f ( x ) < N f(x) < N f(x)<N。记作
    lim ⁡ x → a f ( x ) = − ∞ \lim_{x \rightarrow a}f(x) = -\infty xalimf(x)=
    如图所示
    在这里插入图片描述

练习题

  1. 根据函数图像,找出 ε = 0.1 , ε = 0.2 \varepsilon = 0.1, \varepsilon = 0.2 ε=0.1,ε=0.2所对应的 δ \delta δ
    lim ⁡ x → 2 ( x 3 − 3 x + 4 ) = 6 \lim_{x \rightarrow 2}(x^3 - 3x + 4) = 6 x2lim(x33x+4)=6
  2. 根据函数图像,找出同时满足下面条件的 δ \delta δ
    4 < x < 4 + δ 4 < x < 4 + \delta 4<x<4+δ
    x 2 + 4 x − 4 > 100 \frac{x^2 + 4}{\sqrt{x - 4}} > 100 x4 x2+4>100
  3. 工程师需要制造一个面积为 1000 c m 2 1000cm^2 1000cm2的圆形金属盘。
    (a) 试问这个金属盘的半径应该是多少?
    (b) 如果要使金属盘的面积误差在 ± 5 c m 2 \pm5cm^2 ±5cm2以内,请问半径需要满足什么条件才能达到?
    (c) 根据极限定义,请问以上哪个代表 x x x?哪个代表 a a a?哪个代表 f ( x ) f(x) f(x)?哪个代表 L L L?哪个代表 ε \varepsilon ε?哪个代表 δ \delta δ
  4. 假设 lim ⁡ x → a f ( x ) = ∞ \lim_{x \rightarrow a}f(x) = \infty limxaf(x)=以及 lim ⁡ x → a g ( x ) = c \lim_{x \rightarrow a}g(x) = c limxag(x)=c,其中 c c c是一个实数,请证明。
    (a) lim ⁡ x → a [ f ( x ) + g ( x ) ] = ∞ \lim_{x \rightarrow a}[f(x) + g(x)] = \infty limxa[f(x)+g(x)]=
    (b) lim ⁡ x → a [ f ( x ) g ( x ) ] = ∞ \lim_{x \rightarrow a}[f(x)g(x)]=\infty limxa[f(x)g(x)]= 如果 c > 0 c > 0 c>0
    (c) lim ⁡ x → a [ f ( x ) g ( x ) ] = − ∞ \lim_{x \rightarrow a}[f(x)g(x)]=-\infty limxa[f(x)g(x)]= 如果 c < 0 c < 0 c<0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值