基础物理-二维和三维运动4

4-1 位置和位移

位置和位移

在定位一个粒子(或类粒子物体)时,常用的位置矢量 r ⃗ \vec{r} r ,它是从参考点(通常是原点)到粒子的矢量。在模块3-2的单位矢量表示法中, r ⃗ \vec{r} r 可以表示为:

r ⃗ = x i ^ + y j ^ + z k ^ (4-1) \vec{r} = x\hat{i} + y\hat{j} + z\hat{k} \tag{4-1} r =xi^+yj^+zk^(4-1)

其中, x i ^ x\hat{i} xi^ y j ^ y\hat{j} yj^ z k ^ z\hat{k} zk^ r ⃗ \vec{r} r 的矢量分量,系数 x x x y y y z z z 是其标量分量。

系数 x x x y y y z z z 给出粒子沿坐标轴相对于原点的位置;即粒子的矩形坐标为 ( x , y , z ) (x, y, z) (x,y,z)。例如,图4-1显示了一个粒子的位置矢量为:

在这里插入图片描述

r ⃗ = ( − 3   m ) i ^ + ( 2   m ) j ^ + ( 5   m ) k ^ \vec{r} = (-3 \, \text{m})\hat{i} + (2 \, \text{m})\hat{j} + (5 \, \text{m})\hat{k} r =(3m)i^+(2m)j^+(5m)k^

其矩形坐标为 ( − 3   m , 2   m , 5   m ) (-3 \, \text{m}, 2 \, \text{m}, 5 \, \text{m}) (3m,2m,5m)。沿x轴,粒子距离原点3米,沿 − i ^ -\hat{i} i^ 方向;沿 y y y 轴,粒子距离原点2米,沿 + j ^ +\hat{j} +j^ 方向;沿 z z z 轴,粒子距离原点5米,沿 + k ^ +\hat{k} +k^ 方向。

当粒子运动时,其位置矢量发生变化,矢量始终从参考点(原点)指向粒子。如果位置矢量在一段时间内从 r ⃗ 1 \vec{r}_1 r 1 变为 r ⃗ 2 \vec{r}_2 r 2,那么在此时间间隔内粒子的位移 Δ r ⃗ \Delta \vec{r} Δr 为:

Δ r ⃗ = r ⃗ 2 − r ⃗ 1 (4-2) \Delta \vec{r} = \vec{r}_2 - \vec{r}_1 \tag{4-2} Δr =r 2r 1(4-2)

使用公式4-1中的单位矢量表示法,我们可以将该位移重写为:

Δ r ⃗ = ( x 2 i ^ + y 2 j ^ + z 2 k ^ ) − ( x 1 i ^ + y 1 j ^ + z 1 k ^ ) , \Delta \vec{r} = (x_2 \hat{i} + y_2 \hat{j} + z_2 \hat{k}) - (x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k}), Δr =(x2i^+y2j^+z2k^)(x1i^+y1j^+z1k^),

或写成:

Δ r ⃗ = ( x 2 − x 1 ) i ^ + ( y 2 − y 1 ) j ^ + ( z 2 − z 1 ) k ^ (4-3) \Delta \vec{r} = (x_2 - x_1) \hat{i} + (y_2 - y_1) \hat{j} + (z_2 - z_1) \hat{k} \tag{4-3} Δr =(x2x1)i^+(y2y1)j^+(z2z1)k^(4-3)

其中坐标 ( x 1 , y 1 , z 1 ) (x_1, y_1, z_1) (x1,y1,z1) 对应位置矢量 r ⃗ 1 \vec{r}_1 r 1,坐标 ( x 2 , y 2 , z 2 ) (x_2, y_2, z_2) (x2,y2,z2) 对应位置矢量 r ⃗ 2 \vec{r}_2 r 2。我们也可以通过代入 Δ x = ( x 2 − x 1 ) \Delta x = (x_2 - x_1) Δx=(x2x1) Δ y = ( y 2 − y 1 ) \Delta y = (y_2 - y_1) Δy=(y2y1) Δ z = ( z 2 − z 1 ) \Delta z = (z_2 - z_1) Δz=(z2z1) 来重新表示位移:

Δ r ⃗ = Δ x i ^ + Δ y j ^ + Δ z k ^ (4-4) \Delta \vec{r} = \Delta x \hat{i} + \Delta y \hat{j} + \Delta z \hat{k} \tag{4-4} Δr =Δxi^+Δyj^+Δzk^(4-4)

4-2 平均速度和瞬时速度

平均速度和瞬时速度

如果一个粒子从一个点移动到另一个点,我们可能需要知道它是如何移动的。正如在第 2 章中一样,我们可以定义两个量来表示“移动得有多快”:平均速度瞬时速度。然而,在这里我们必须将这些量视为向量并使用向量符号。

如果一个粒子在时间间隔 Δ t \Delta t Δt 内通过位移 Δ r ⃗ \Delta \vec{r} Δr ,那么它的 平均速度 v ⃗ avg \vec{v}_{\text{avg}} v avg 是:

v ⃗ avg = Δ r ⃗ Δ t (4-8) \vec{v}_{\text{avg}} = \frac{\Delta \vec{r}}{\Delta t} \tag{4-8} v avg=ΔtΔr (4-8)

这告诉我们, v ⃗ avg \vec{v}_{\text{avg}} v avg(方程 4-8 左侧的向量)的方向必须与位移 Δ r ⃗ \Delta \vec{r} Δr (方程右侧的向量)的方向相同。使用方程 4-4,我们可以将方程 4-8 写为向量分量形式:

v ⃗ avg = Δ x i ^ + Δ y j ^ + Δ z k ^ Δ t = Δ x Δ t i ^ + Δ y Δ t j ^ + Δ z Δ t k ^ \vec{v}_{\text{avg}} = \frac{\Delta x \hat{i} + \Delta y \hat{j} + \Delta z \hat{k}}{\Delta t} = \frac{\Delta x}{\Delta t} \hat{i} + \frac{\Delta y}{\Delta t} \hat{j} + \frac{\Delta z}{\Delta t} \hat{k} v avg=ΔtΔxi^+Δyj^+Δzk^=ΔtΔxi^+ΔtΔyj^+ΔtΔzk^

例如,如果粒子通过位移 ( 12   m ) i ^ + ( 3.0   m ) k ^ (12 \, \text{m})\hat{i} + (3.0 \, \text{m})\hat{k} (12m)i^+(3.0m)k^ 2.0 2.0 2.0 秒内移动,那么该运动的平均速度为:

v ⃗ avg = Δ r ⃗ Δ t = ( 12   m ) i ^ + ( 3.0   m ) k ^ 2.0   s = ( 6.0   m/s ) i ^ + ( 1.5   m/s ) k ^ \vec{v}_{\text{avg}} = \frac{\Delta \vec{r}}{\Delta t} = \frac{(12 \, \text{m})\hat{i} + (3.0 \, \text{m})\hat{k}}{2.0 \, \text{s}} = (6.0 \, \text{m/s})\hat{i} + (1.5 \, \text{m/s})\hat{k} v avg=ΔtΔr =2.0s(12m)i^+(3.0m)k^=(6.0m/s)i^+(1.5m/s)k^

也就是说,平均速度(一个向量量)在 x x x 轴上有 6.0   m/s 6.0 \, \text{m/s} 6.0m/s 的分量,在 z z z 轴上有 1.5   m/s 1.5 \, \text{m/s} 1.5m/s 的分量。

当我们谈论一个粒子的速度时,我们通常指的是粒子在某一瞬间的 瞬时速度 v ⃗ \vec{v} v 。这个 v ⃗ \vec{v} v v ⃗ avg \vec{v}_{\text{avg}} v avg 在时间间隔 Δ t \Delta t Δt 趋向于该瞬间的 0 0 0 时所逼近的值。使用微积分的语言,我们可以将 v ⃗ \vec{v} v 写为:

v ⃗ = d r ⃗ d t (4-10) \vec{v} = \frac{d\vec{r}}{dt} \tag{4-10} v =dtdr (4-10)

图 4-3 显示了一个粒子限制在 x y xy xy 平面内的路径。随着粒子沿着曲线向右移动,其位置向量从 r ⃗ 1 \vec{r}_1 r 1 转变为 r ⃗ 2 \vec{r}_2 r 2。在时间间隔 Δ t \Delta t Δt 内,粒子的位移是 Δ r ⃗ \Delta \vec{r} Δr

为了找到粒子在时刻 t 1 t_1 t1 (此时粒子位于位置 1)处的瞬时速度,我们将时间间隔 Δ t \Delta t Δt 缩小到 t 1 t_1 t1 附近的 0 0 0。当我们这样做时,三件事情发生了:(1)图 4-3 中的位置矢量 r ⃗ 2 \vec{r}_2 r 2 r ⃗ 1 \vec{r}_1 r 1 移动,因此 Δ r ⃗ \Delta \vec{r} Δr 趋向于 0 0 0;(2) Δ r ⃗ / Δ t \Delta \vec{r}/\Delta t Δr t 的方向(以及 v ⃗ avg \vec{v}_{\text{avg}} v avg 的方向)趋向于粒子在位置 1 的路径切线方向;(3)平均速度 v ⃗ avg \vec{v}_{\text{avg}} v avg t 1 t_1 t1 处趋向于瞬时速度 v ⃗ \vec{v} v

在这里插入图片描述

Δ t → 0 \Delta t \to 0 Δt0 时, v ⃗ avg → v ⃗ \vec{v}_{\text{avg}} \to \vec{v} v avgv ,这里最重要的是, v ⃗ avg \vec{v}_{\text{avg}} v avg 取决于切线方向。因此, v ⃗ \vec{v} v 也具有相同的方向:

粒子的瞬时速度 v ⃗ \vec{v} v 的方向始终与粒子在该位置的路径切线方向相切。

三维情况下的结果是一样的: v ⃗ \vec{v} v 总是与粒子的路径相切。为了用单位向量形式表示方程 4-10,我们从方程 4-1 中代入 r ⃗ \vec{r} r

v ⃗ = d d t ( x i ^ + y j ^ + z k ^ ) = d x d t i ^ + d y d t j ^ + d z d t k ^ \vec{v} = \frac{d}{dt} (x \hat{i} + y \hat{j} + z \hat{k}) = \frac{dx}{dt} \hat{i} + \frac{dy}{dt} \hat{j} + \frac{dz}{dt} \hat{k} v =dtd(xi^+yj^+zk^)=dtdxi^+dtdyj^+dtdzk^

该方程可以稍微简化为:

v ⃗ = v x i ^ + v y j ^ + v z k ^ (4-11) \vec{v} = v_x \hat{i} + v_y \hat{j} + v_z \hat{k} \tag{4-11} v =vxi^+vyj^+vzk^(4-11)

其中, v ⃗ \vec{v} v 的标量分量为:

v x = d x d t , v y = d y d t , v z = d z d t (4-12) v_x = \frac{dx}{dt}, \quad v_y = \frac{dy}{dt}, \quad v_z = \frac{dz}{dt} \tag{4-12} vx=dtdx,vy=dtdy,vz=dtdz(4-12)

例如, d x / d t dx/dt dx/dt 是沿 x x x 轴的 v ⃗ \vec{v} v 的标量分量。因此,我们可以通过对 r ⃗ \vec{r} r 的标量分量 x x x y y y 求导来找到 v ⃗ \vec{v} v 的标量分量。

图 4-4 显示了速度矢量 v ⃗ \vec{v} v 及其标量 x x x y y y 分量。注意, v ⃗ \vec{v} v 与粒子在粒子位置的路径相切。警告:当位置矢量画出时,如图 4-1 到图 4-3 所示,它是一个从某一点(“此处”)延伸到另一点(“那里”)的箭头。然而,如图 4-4 所示,当画出速度矢量时,它不从一个点延伸到另一个点,而是表示粒子在尾部处的瞬时运动方向,并且可以按比例画出它的长度(表示速度的大小)。

在这里插入图片描述

4-3 平均加速度和瞬时加速度

平均加速度和瞬时加速度

当粒子的速度在时间间隔 Δ t \Delta t Δt 内从 v ⃗ 1 \vec{v}_1 v 1 变化到 v ⃗ 2 \vec{v}_2 v 2 时,其平均加速度 a ⃗ avg \vec{a}_{\text{avg}} a avg 为:

平均加速度 = 速度的变化 时间间隔 , \text{平均加速度} = \frac{\text{速度的变化}}{\text{时间间隔}}, 平均加速度=时间间隔速度的变化,

a ⃗ avg = v ⃗ 2 − v ⃗ 1 Δ t = Δ v ⃗ Δ t (4-15) \vec{a}_{\text{avg}} = \frac{\vec{v}_2 - \vec{v}_1}{\Delta t} = \frac{\Delta \vec{v}}{\Delta t} \tag{4-15} a avg=Δtv 2v 1=ΔtΔv (4-15)

如果我们将 Δ t \Delta t Δt 缩小到某一瞬时的极限,则 a ⃗ avg \vec{a}_{\text{avg}} a avg 就趋近于该瞬时的瞬时加速度 a ⃗ \vec{a} a ,即:

a ⃗ = d v ⃗ d t (4-16) \vec{a} = \frac{d\vec{v}}{dt} \tag{4-16} a =dtdv (4-16)

如果速度的大小或方向(或两者)发生变化,粒子就必须具有加速度。

我们可以通过将公式 4-11 中的 v ⃗ \vec{v} v 代入公式 4-16 来以单位向量形式表示加速度:

a ⃗ = d d t ( v x i ^ + v y j ^ + v z k ^ ) = d v x d t i ^ + d v y d t j ^ + d v z d t k ^ . \begin{align*} \vec{a} &= \frac{d}{dt}(v_x \hat{i} + v_y \hat{j} + v_z \hat{k})\\ &= \frac{dv_x}{dt} \hat{i} + \frac{dv_y}{dt} \hat{j} + \frac{dv_z}{dt} \hat{k}. \end{align*} a =dtd(vxi^+vyj^+vzk^)=dtdvxi^+dtdvyj^+dtdvzk^.

我们可以将其重写为:

a ⃗ = a x i ^ + a y j ^ + a z k ^ (4-17) \vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k} \tag{4-17} a =axi^+ayj^+azk^(4-17)

其中 a ⃗ \vec{a} a 的标量分量为:

a x = d v x d t , a y = d v y d t , a z = d v z d t (4-18) a_x = \frac{dv_x}{dt}, a_y = \frac{dv_y}{dt}, a_z = \frac{dv_z}{dt} \tag{4-18} ax=dtdvx,ay=dtdvy,az=dtdvz(4-18)

要找到 a ⃗ \vec{a} a 的标量分量,我们对 v ⃗ \vec{v} v 的标量分量进行微分。

图 4-6 显示了粒子在二维运动中的加速度向量 a ⃗ \vec{a} a 及其标量分量。注意:当绘制加速度向量时,如图 4-6 所示,它并不是从一个位置延伸到另一个位置。相反,它表示粒子加速度的方向,粒子位于向量的尾部,并且向量的长度(代表加速度的大小)可以按任何比例绘制。

在这里插入图片描述

4-4 抛射运动

抛射运动

我们接下来考虑一种二维运动的特殊情况:一个粒子在垂直平面内以初速度 v ⃗ 0 \vec{v}_0 v 0 运动,但其加速度始终为自由落体加速度 g ⃗ \vec{g} g ,方向向下。这样的粒子称为抛射物(意指它被抛射或发射),它的运动称为抛射运动。一个抛射物可能是网球或飞行中的棒球,但它不是在空中飞行的鸭子。许多体育运动研究抛射物的运动,例如在 1970 年代发现 Z 射击的壁球运动员轻松赢得比赛,因为球在球场后方飞行的轨迹让人迷惑。

我们的目标是使用章节 4-1 到 4-3 中描述的二维运动工具来分析抛射运动,并假设空气对抛射物没有影响。图 4-9 显示了当空气没有影响时,抛射物的运动轨迹。我们将很快分析这个图。抛射物以初速度 v ⃗ 0 \vec{v}_0 v 0 发射,其表达式为:

v ⃗ 0 = v 0 x i ^ + v 0 y j ^ (4-19) \vec{v}_0 = v_{0x} \hat{i} + v_{0y} \hat{j} \tag{4-19} v 0=v0xi^+v0yj^(4-19)

我们可以通过知道初速度 v ⃗ 0 \vec{v}_0 v 0 与 x 轴正方向之间的角度 θ 0 \theta_0 θ0 来求出速度分量 v 0 x v_{0x} v0x v 0 y v_{0y} v0y

v 0 x = v 0 cos ⁡ θ 0 and v 0 y = v 0 sin ⁡ θ 0 (4-20) v_{0x} = v_0 \cos \theta_0 \quad \text{and} \quad v_{0y} = v_0 \sin \theta_0 \tag{4-20} v0x=v0cosθ0andv0y=v0sinθ0(4-20)

在它的二维运动过程中,抛射物的位置向量 r ⃗ \vec{r} r 和速度向量 v ⃗ \vec{v} v 不断变化,但加速度向量 a ⃗ \vec{a} a 是恒定的,并始终垂直向下。抛射物没有水平加速度。

抛射运动看起来复杂,如图 4-8 和 4-9 所示,但我们可以利用以下简化特征(通过实验得知):

在抛射运动中,水平运动和垂直运动是相互独立的;也就是说,这两者互不影响。

在这里插入图片描述

这种特征使我们能够将涉及二维运动的问题分解为两个独立且更容易的一维问题,一个是水平运动(没有加速度),另一个是垂直运动(具有恒定的向下加速度)。这里有两个实验表明水平运动和垂直运动是相互独立的。

两个高尔夫球

图 4-10 是两个高尔夫球的频闪照片,其中一个球只是简单地释放,另一个球通过弹簧水平发射。高尔夫球具有相同的垂直运动,两者在相同的时间间隔内通过相同的垂直距离。一个球在下落时具有水平运动的事实对它的垂直运动没有影响;也就是说,水平运动和垂直运动是相互独立的。
在这里插入图片描述

一个伟大的学生演示

在图 4-11 中,使用吹箭筒 G 将球作为抛射物直接瞄准挂在磁铁 M 上的罐子。当球刚离开吹箭筒时,罐子被释放。如果 g g g(自由落体加速度的大小)为零,球将沿着图 4-11 所示的直线路径运动,罐子在磁铁释放后会悬浮在原地。球一定会击中罐子。然而, g g g 并不是零,如图 4-11 所示,在球飞行的时间内,球和罐子都可以从它们的零重力位置下落相同的距离 h h h。演示者吹得越用力,球的初速度就越大,飞行时间越短, h h h 的值也越小。

在这里插入图片描述

水平运动

现在我们准备分析抛体运动,分别从水平和垂直方向开始。我们从水平运动开始。因为水平方向上没有加速度,抛体的速度水平分量 v x v_x vx 在运动过程中始终保持初速度 v 0 x v_{0x} v0x 不变,如图 4-12 所示。任意时刻 t t t,抛体的水平位移 x − x 0 x - x_0 xx0 相对于初始位置 x 0 x_0 x0 由方程 2-15(当 a = 0 a = 0 a=0 时)给出,我们写作:

x − x 0 = v 0 x t x - x_0 = v_{0x} t xx0=v0xt

因为 v 0 x = v 0 cos ⁡ θ 0 v_{0x} = v_0 \cos \theta_0 v0x=v0cosθ0,此方程变为:

x − x 0 = ( v 0 cos ⁡ θ 0 ) t (4-21) x - x_0 = (v_0 \cos \theta_0)t \tag{4-21} xx0=(v0cosθ0)t(4-21)

在这里插入图片描述

垂直运动

垂直运动是我们在模块 2-5 中讨论的自由落体运动。最重要的是加速度是恒定的。因此,表 2-1 中的方程仍然适用,只需要将 a a a 替换为 − g -g g,并切换到 y y y 标记。例如,方程 2-15 变为:

y − y 0 = v 0 y t − 1 2 g t 2 = ( v 0 sin ⁡ θ 0 ) t − 1 2 g t 2 \begin{align*} y - y_0 &= v_{0y} t - \frac{1}{2} g t^2\\ & = (v_0 \sin \theta_0)t - \frac{1}{2} g t^2 \tag{4-22} \end{align*} yy0=v0yt21gt2=(v0sinθ0)t21gt2(4-22)

其中,初始垂直速度分量 v 0 y v_{0y} v0y 被替换为 v 0 sin ⁡ θ 0 v_0 \sin \theta_0 v0sinθ0。类似地,方程 2-11 和 2-16 变为:

v y = v 0 sin ⁡ θ 0 − g t (4-23) v_y = v_0 \sin \theta_0 - g t \tag{4-23} vy=v0sinθ0gt(4-23)

以及

v y 2 = ( v 0 sin ⁡ θ 0 ) 2 − 2 g ( y − y 0 ) (4-24) v_y^2 = (v_0 \sin \theta_0)^2 - 2g(y - y_0) \tag{4-24} vy2=(v0sinθ0)22g(yy0)(4-24)

路径方程

我们可以通过消去时间 t t t 来得到抛体的路径方程(即其轨迹)。将方程 4-21 和 4-22 联立,消去 t t t 并代入方程 4-22,经过简单的整理后,我们得到:

y = ( tan ⁡ θ 0 ) x − g x 2 2 ( v 0 cos ⁡ θ 0 ) 2 (trajectory). (4-25) y = (\tan \theta_0)x - \frac{g x^2}{2(v_0 \cos \theta_0)^2} \quad \text{(trajectory).} \tag{4-25} y=(tanθ0)x2(v0cosθ0)2gx2(trajectory).(4-25)

这是图 4-9 中显示的抛物线轨迹的方程。在推导过程中,为简便起见,我们假设 x 0 = 0 x_0 = 0 x0=0 y 0 = 0 y_0 = 0 y0=0,即抛体从原点出发。由于 θ 0 \theta_0 θ0 v 0 v_0 v0 是常数,方程 4-25 的形式是 y = a x + b x 2 y = ax + bx^2 y=ax+bx2,其中 a a a b b b 是常数。这是抛物线方程,因此路径是抛物线型的。

水平射程

抛体的水平射程 R R R 是当抛体返回到其初始高度(即发射高度)时所经过的水平距离。为了求解射程 R R R,我们在方程 4-21 中设 x − x 0 = R x - x_0 = R xx0=R,在方程 4-22 中设 y − y 0 = 0 y - y_0 = 0 yy0=0,即:

R = ( v 0 cos ⁡ θ 0 ) t R = (v_0 \cos \theta_0)t R=(v0cosθ0)t

以及

0 = ( v 0 sin ⁡ θ 0 ) t − 1 2 g t 2 0 = (v_0 \sin \theta_0)t - \frac{1}{2}gt^2 0=(v0sinθ0)t21gt2

通过消去这两个方程中的 (t),我们得到:

R = 2 v 0 2 g sin ⁡ θ 0 cos ⁡ θ 0 R = \frac{2v_0^2}{g} \sin \theta_0 \cos \theta_0 R=g2v02sinθ0cosθ0

利用恒等式 sin ⁡ 2 θ 0 = 2 sin ⁡ θ 0 cos ⁡ θ 0 \sin 2\theta_0 = 2\sin \theta_0 \cos \theta_0 sin2θ0=2sinθ0cosθ0,我们得到:

R = v 0 2 g sin ⁡ 2 θ 0 (4-26) R = \frac{v_0^2}{g} \sin 2\theta_0 \tag{4-26} R=gv02sin2θ0(4-26)

这个方程并不适用于当抛体的最终高度不是发射高度的情况。注意,方程 4-26 中的 R R R sin ⁡ 2 θ 0 = 1 \sin 2\theta_0 = 1 sin2θ0=1 时达到最大值,这对应于 2 θ 0 = 9 0 ∘ 2\theta_0 = 90^\circ 2θ0=90 θ 0 = 4 5 ∘ \theta_0 = 45^\circ θ0=45

水平射程 R R R 在发射角为 45 度时达到最大值。

然而,当抛体的发射高度和着陆高度不同(如在某些体育运动中),发射角为 45 度并不会得到最大水平射程。

空气的影响

我们假设抛体在运动过程中通过的空气对其运动没有影响。然而,在很多情况下,我们的计算结果与抛体的实际运动之间存在较大的差异,因为空气对运动产生了阻力(反作用力)。例如,图 4-13 显示了一个飞球的两条路径,该飞球以与水平面成 60° 的角度,初速度为 44.7 米/秒离开球棒。路径 I(棒球手的飞球)是一条计算出的路径,近似模拟了在空气中的正常比赛条件下的运动。路径 II(物理学教授的飞球)则是该球在真空中运动时的路径。

在这里插入图片描述

4-5 匀速圆周运动

匀速圆周运动

如果一个粒子以恒定的速度沿着圆形轨迹或圆弧运动,则称为匀速圆周运动。虽然速度没有变化,粒子仍然在加速,因为速度的方向在不断变化。

图 4-16 显示了匀速圆周运动中速度和加速度的关系。两者的大小始终不变,但它们的方向在不断变化。速度始终沿着运动方向的切线,而加速度总是指向圆心。因此,与匀速圆周运动相关的加速度称为向心加速度,意思是“指向中心”的加速度。

在这里插入图片描述

我们将证明,加速度的大小为:

a = v 2 r (centripetal acceleration), (4-34) a = \frac{v^2}{r} \quad \text{(centripetal acceleration),} \tag{4-34} a=rv2(centripetal acceleration),(4-34)

其中, r r r 是圆的半径, v v v 是粒子的速度。
此外,在该加速度下,以恒定速度运动的粒子在时间 T T T 内走过圆的周长(距离为 2 π r 2\pi r 2πr),即:

T = 2 π r v (period). (4-35) T = \frac{2\pi r}{v} \quad \text{(period).} \tag{4-35} T=v2πr(period).(4-35)

T T T 称为运动的周期,也就是粒子绕闭合路径完整运动一周所需的时间。

方程 4-34 的证明

为了找到匀速圆周运动中加速度的大小和方向,我们考虑图 4-17。在图 4-17a 中,粒子 p p p 以恒定速度 v v v 沿半径为 r r r 的圆运动。此时,粒子的位置坐标为 x p x_p xp y p y_p yp

在这里插入图片描述

回顾模块 4-2,我们知道粒子运动的速度矢量 v ⃗ \vec{v} v 始终切线于粒子的运动路径。在图 4-17a 中,这意味着 v ⃗ \vec{v} v 垂直于从圆心到粒子位置的半径 r r r。因此, v ⃗ \vec{v} v 与半径 r r r x x x 轴的夹角 θ \theta θ 相同。

速度矢量 v ⃗ \vec{v} v 的标量分量如图 4-17b 所示。使用这些分量,我们可以写出速度 v ⃗ \vec{v} v 为:

v ⃗ = v x i ^ + v y j ^ = ( − v sin ⁡ θ ) i ^ + ( v cos ⁡ θ ) j ^ (4-36) \vec{v} = v_x \hat{i} + v_y \hat{j} = (-v \sin \theta) \hat{i} + (v \cos \theta) \hat{j} \tag{4-36} v =vxi^+vyj^=(vsinθ)i^+(vcosθ)j^(4-36)

现在,使用图 4-17a 中的直角三角形,我们可以用 y p / r y_p / r yp/r 代替 sin ⁡ θ \sin \theta sinθ,用 x p / r x_p / r xp/r 代替 cos ⁡ θ \cos \theta cosθ,从而写出:

v ⃗ = ( − v y p r ) i ^ + ( v x p r ) j ^ (4-37) \vec{v} = \left(-\frac{v y_p}{r}\right) \hat{i} + \left(\frac{v x_p}{r}\right) \hat{j} \tag{4-37} v =(rvyp)i^+(rvxp)j^(4-37)

为了找到粒子 p p p 的加速度 a ⃗ \vec{a} a ,我们必须对速度 v ⃗ \vec{v} v 求时间导数。注意速度 v v v 和半径 r r r 不随时间变化,因此我们得到:

a ⃗ = d v ⃗ d t = ( − v r d y p d t ) i ^ + ( v r d x p d t ) j ^ (4-38) \vec{a} = \frac{d\vec{v}}{dt} = \left(-\frac{v}{r} \frac{dy_p}{dt}\right) \hat{i} + \left(\frac{v}{r} \frac{dx_p}{dt}\right) \hat{j} \tag{4-38} a =dtdv =(rvdtdyp)i^+(rvdtdxp)j^(4-38)

现在,注意到 d y p / d t dy_p / dt dyp/dt 的变化率等于速度分量 v x v_x vx。同样地, d x p / d t = v x dx_p / dt = v_x dxp/dt=vx,再从图 4-17b 中可以看到, v x = − v sin ⁡ θ v_x = -v \sin \theta vx=vsinθ v y = v cos ⁡ θ v_y = v \cos \theta vy=vcosθ。将这些代入方程 4-38 中,我们得到:

a ⃗ = ( − v 2 r cos ⁡ θ ) i ^ + ( − v 2 r sin ⁡ θ ) j ^ ( 4 − 39 ) \vec{a} = \left(-\frac{v^2}{r} \cos \theta\right) \hat{i} + \left(-\frac{v^2}{r} \sin \theta\right) \hat{j} \quad (4-39) a =(rv2cosθ)i^+(rv2sinθ)j^(439)

这个矢量及其分量如图 4-17c 所示。根据方程 3-6,我们发现:

a = a x 2 + a y 2 = v 2 r (4-34) a = \sqrt{a_x^2 + a_y^2} = \frac{v^2}{r} \tag{4-34} a=ax2+ay2 =rv2(4-34)

这是我们要证明的向心加速度的大小。

为了找到加速度 a ⃗ \vec{a} a 的方向,我们求得图 4-17c 中的角度 ϕ \phi ϕ,即:

tan ⁡ ϕ = a y a x = − ( v 2 / r ) sin ⁡ θ − ( v 2 / r ) cos ⁡ θ = tan ⁡ θ \tan \phi = \frac{a_y}{a_x} = \frac{-(v^2 / r) \sin \theta}{-(v^2 / r) \cos \theta} = \tan \theta tanϕ=axay=(v2/r)cosθ(v2/r)sinθ=tanθ

由此得知,加速度 a ⃗ \vec{a} a 与粒子位置的半径 r r r 的方向相同,指向圆心。

4-6 一维相对运动

一维相对运动

假设你看到一只鸭子以 30 km/h 的速度飞行。另一只鸭子在旁边以相同的速度飞行。那么,第一只鸭子看到第二只鸭子是静止的。这表明,粒子的速度取决于谁在观察或测量它的速度,也就是参考系

为了理解这个现象,我们需要考虑一个固定的物理对象,比如地面。物体相对于地面的位置或速度就是一个常见的参考系。在日常生活中,我们通常将地面作为参考系。例如,测速仪上显示的物体速度是相对于地面测量的。

图 4-18 中,假设 Barbara(位于参考系 B)以恒定速度驾驶,观察一个物体 P(“粒子”)的运动。Alex(位于参考系 A)站在地面上,也在观察物体 P。在某一时刻,P 的位置相对于参考系 A 的坐标可以表示为:

x P A = x P B + x B A (4-40) x_{PA} = x_{PB} + x_{BA} \tag{4-40} xPA=xPB+xBA(4-40)

这个方程的含义是:物体 P 相对于参考系 A 的坐标 x P A x_{PA} xPA 等于物体 P 相对于参考系 B 的坐标 x P B x_{PB} xPB 加上参考系 B 相对于参考系 A 的坐标 x B A x_{BA} xBA

对方程 4-40 求时间导数,可以得到物体 P 的速度关系:

d d t ( x P A ) = d d t ( x P B ) + d d t ( x B A ) \frac{d}{dt} (x_{PA}) = \frac{d}{dt} (x_{PB}) + \frac{d}{dt} (x_{BA}) dtd(xPA)=dtd(xPB)+dtd(xBA)

因此,速度可以表示为:

v P A = v P B + v B A (4-41) v_{PA} = v_{PB} + v_{BA} \tag{4-41} vPA=vPB+vBA(4-41)

这个方程的含义是:物体 P 相对于参考系 A 的速度 v P A v_{PA} vPA 等于物体 P 相对于参考系 B 的速度 v P B v_{PB} vPB 加上参考系 B 相对于参考系 A 的速度 v B A v_{BA} vBA

在这里,我们只考虑相对于彼此以恒定速度运动的参考系。在我们的例子中,Barbara(参考系 B)始终以相对于 Alex(参考系 A)的恒定速度 v B A v_{BA} vBA 驾驶汽车。物体 P(移动的粒子)可以改变速度和方向(即它可以加速)。

为了将 Barbara 和 Alex 对物体 P 的加速度联系起来,我们对方程 4-41 进行时间导数:

d d t ( v P A ) = d d t ( v P B ) + d d t ( v B A ) \frac{d}{dt}(v_{PA}) = \frac{d}{dt}(v_{PB}) + \frac{d}{dt}(v_{BA}) dtd(vPA)=dtd(vPB)+dtd(vBA)

因为 v B A v_{BA} vBA 是常量,最后一项的导数为零,因此我们得到:

a P A = a P B (4-42) a_{PA} = a_{PB} \tag{4-42} aPA=aPB(4-42)

换句话说:

观察者在相对彼此以恒定速度运动的不同参考系中,将测量到移动粒子的相同加速度。

4-7 二维相对运动

二维相对运动

我们的两位观察者再次从参考系 A 和参考系 B 的原点观察移动的粒子 P,而 B 以相对于 A 的恒定速度 v ⃗ B A \vec{v}_{BA} v BA 运动。(这两个参考系的坐标轴保持平行。)图 4-19 显示了运动过程中的某一时刻。在该时刻,B 的原点相对于 A 的原点的位置矢量是 r ⃗ B A \vec{r}_{BA} r BA。同时,粒子 P 相对于 A 的位置矢量是 r ⃗ P A \vec{r}_{PA} r PA,而 P 相对于 B 的位置矢量是 r ⃗ P B \vec{r}_{PB} r PB。根据这三个位置矢量的排列关系,我们可以通过以下公式将它们联系起来:

r ⃗ P A = r ⃗ P B + r ⃗ B A (4-43) \vec{r}_{PA} = \vec{r}_{PB} + \vec{r}_{BA} \tag{4-43} r PA=r PB+r BA(4-43)

对该方程求时间导数,我们可以将粒子 P 的速度 v ⃗ P A \vec{v}_{PA} v PA v ⃗ P B \vec{v}_{PB} v PB 相对于观察者联系起来:

v ⃗ P A = v ⃗ P B + v ⃗ B A (4-44) \vec{v}_{PA} = \vec{v}_{PB} + \vec{v}_{BA} \tag{4-44} v PA=v PB+v BA(4-44)

对该关系再求一次时间导数,我们可以将粒子 P 的加速度 a ⃗ P A \vec{a}_{PA} a PA a ⃗ P B \vec{a}_{PB} a PB 相对于观察者联系起来。然而,注意由于 v ⃗ B A \vec{v}_{BA} v BA 是常量,其时间导数为零。因此我们得到:

a ⃗ P A = a ⃗ P B (4-45) \vec{a}_{PA} = \vec{a}_{PB} \tag{4-45} a PA=a PB(4-45)

对于一维运动,我们可以得出以下规则:在相互以恒定速度运动的不同参考系中,观察者将测量到移动粒子的相同加速度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值