Python|基于改进粒子群IPSO与LSTM的短期电力负荷预测研究

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Python代码实现


💥1 概述

短期电力负荷预测在电力系统调度和运行中具有重要意义。为了提高预测精度,可以结合改进粒子群算法(Improved Particle Swarm Optimization, IPSO)和长短期记忆网络(Long Short-Term Memory, LSTM)进行研究。

首先,改进粒子群算法可以用来优化LSTM模型的超参数,如学习率、迭代次数等,以提高模型的收敛速度和预测准确性。IPSO算法可以通过不断地调整超参数来寻找最优的模型配置,从而提高模型的性能。

其次,LSTM可以用来处理时间序列数据,并且能够捕捉时间序列中的长期依赖关系,适用于电力负荷预测这种具有时间相关性的问题。通过结合IPSO和LSTM,可以更好地利用历史数据来进行短期负荷预测,提高预测精度。

在研究中,可以首先利用IPSO算法对LSTM模型进行超参数优化,然后使用优化后的LSTM模型进行短期电力负荷预测。通过对比传统的方法和单独使用LSTM模型的预测结果,可以评估改进粒子群IPSO与LSTM结合的效果。

最后,研究还可以探讨如何进一步优化模型,比如引入其他特征工程方法、模型融合技术等,以进一步提高短期电力负荷预测的准确性和稳定性。

通过基于改进粒子群IPSO与LSTM的短期电力负荷预测研究,可以为电力系统的调度和运行提供更准确的负荷预测结果,有助于提高电网的安全性和稳定性。

📚2 运行结果

采用python3.6 TensorFlow1.x框架。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]赵一鸣,吉月辉,刘俊杰,等.基于EMD-IPSO-LSTM模型的短期电力负荷预测[J].国外电子测量技术, 2023, 42(1):132-137.

[2]李万,冯芬玲,蒋琦玮.改进粒子群算法优化LSTM神经网络的铁路客运量预测[J].铁道科学与工程学报, 2018, 15(12):7.DOI:10.19713/j.cnki.43-1423/u.2018.12.033.

🌈4 Python代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值