💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
无人机的状态估计是指通过传感器数据和数学模型,推断或估计无人机的位置、速度、姿态等状态信息的过程。这一过程对于无人机的自主飞行、导航和控制至关重要。 无人机通常配备了多种传感器,如GPS、惯性测量单元(IMU)、气压计、视觉传感器等,用于获取环境和飞行状态的信息。 GPS提供位置和速度信息,IMU提供加速度和角速度信息,气压计提供高度信息,视觉传感器则可以用于地面特征识别和定位。通过状态估计,无人机能够获取准确的位置、速度、姿态等状态信息,为飞行控制、导航规划和任务执行提供重要支持,从而实现自主、智能的飞行能力。
📚2 运行结果
主函数部分代码:
close all;
clear;
addpath('common_functions/'); % includes hat, vee, etc
%% Define variables
tf = 20; % final time
freq = 100; % frequency of the system (Hz)
freq_gps = 5; % frequency of the GPS update (Hz)
gps_delay = 0.2; % GPS measurement delay (this code is hard coded
% such that this delay must be a multiplication of freq_gps)
N = tf * freq + 1;
t = linspace(0, tf, N);
h = t(2) - t(1);
% Parameters
R_bi = eye(3);
g = 9.81;
%% Covariances
% Variances of w_k
V_a = 1e-1*diag([0.1 0.1 0.1]).^2; % acceleration
V_W = 1e-1*diag([0.5 0.5 0.5]).^2; % angular velocity
V_b_a = 0.05^2; % acclerometer z bias
V_R_imu = diag([0.01 0.01 0.01]).^2;
V_x_gps = 0.01^2 * eye(3);
V_v_gps = 0.01^2 * eye(3);
V_a_imu = 0.01^2 * eye(3);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张河山,谭鑫,范梦伟,等.无人机高空航拍视角下小尺度车辆精确检测方法[J/OL].交通运输系统工程与信息:1-12[2024-04-07].http://kns.cnki.net/kcms/detail/11.4520.U.20240403.1121.004.html.
[2]鲍莉莉,李锦荣,韩兆恩,等.基于无人机多源数据的梭梭(Holoxylon ammodendron)地上生物量估算[J/OL].中国沙漠,2024(05):1-10[2024-04-07].http://kns.cnki.net/kcms/detail/62.1070.P.20240401.1731.010.html.