【采用二维有限差分法FDM算法来解决泊松方程】在使用2D Poisson方程计算平行板电容器的电场时,将一个二维平行板电容器的横截面放置在计算域的中心研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

在使用2D Poisson方程计算平行板电容器的电场时,将一个二维平行板电容器的横截面放置在计算域的中心。采用二维有限差分法(FDM)算法来解决泊松方程。第一个图中显示了电势的等值线图。第二个图显示了电场大小的详细等值线图,而第三个图则显示了方向向量作为箭头图。

在对二维平行板电容器的电场特性进行深入探究时,我们的研究采用了精确的位置布局,即将电容器的二维横截面巧妙地安放于整个计算域的几何中心,这一巧妙布置极大提升了计算效率与结果的精准度。核心计算技术依托于成熟的二维有限差分法(Finite Difference Method, FDM),该算法以其强大的数值解析能力,成功应对了复杂的二维Poisson方程求解挑战,进而精确描绘出电容器内部及周围空间的电势分布。

成果展示方面,我们精心准备了一系列可视化图表,旨在全方位剖析电场特性。首当其冲的第一幅图展示了电势的等值线分布图,通过细腻的线条变化,直观揭示了电势在电容器不同区域的渐变规律,为后续的深入分析奠定了基础。紧接着的第二幅图,则聚焦于电场强度本身,提供了电场大小的详尽等值线示意图,此图以更为精细的色彩梯度,精确标注了电场强度的微小差异,使观者能清晰识别出电场强度的峰值区和低谷区。

最后,我们创新性地引入了第三幅图——方向向量图,通过一系列精确排列的箭头符号,不仅呈现了电场的方向信息,还形象展现了电场线的流动趋势,使得电场的方向性特征一目了然。这一系列图表的综合运用,无疑为理解与评估平行板电容器的电场分布特性提供了一个全面且直观的视角。

【采用二维有限差分法FDM算法来解决泊松方程】在使用2D Poisson方程计算平行板电容器的电场时,将一个二维平行板电容器的横截面放置在计算域的中心研究

泊松方程是电磁学、流体力学以及许多其他领域中的一个重要偏微分方程,它描述了在给定源分布下的标量势场(如电势或引力势)的分布。对于一个二维平行板电容器的问题,泊松方程可以简化为拉普拉斯方程(如果假设电容器内部没有电荷分布,且边界条件仅由板的电势确定),形式为:

∇2𝑉=∂2𝑉∂𝑥2+∂2𝑉∂𝑦2=0∇2V=∂x2∂2V​+∂y2∂2V​=0

其中 𝑉(𝑥,𝑦)V(x,y) 是电势。如果电容器内有非零电荷分布,则需使用泊松方程:

∇2𝑉=−𝜌𝜀∇2V=−ερ​

其中 𝜌ρ 是电荷密度,𝜀ε 是介电常数。

采用二维有限差分法(FDM)来解决这一问题,我们首先需要将连续区域离散化为网格,然后用差商近似导数,从而将偏微分方程转换成代数方程组。以中心差分为例,对于拉普拉斯算子的近似可以写作:

𝑉𝑖+1,𝑗+𝑉𝑖−1,𝑗−2𝑉𝑖,𝑗Δ𝑥2+𝑉𝑖,𝑗+1+𝑉𝑖,𝑗−1−2𝑉𝑖,𝑗Δ𝑦2=0Δx2Vi+1,j​+Vi−1,j​−2Vi,j​​+Δy2Vi,j+1​+Vi,j−1​−2Vi,j​​=0

这里,𝑉𝑖,𝑗Vi,j​ 表示位于第 𝑖i 列第 𝑗j 行网格点上的电势值,Δ𝑥Δx 和 Δ𝑦Δy 是网格的横向和纵向间距。

对于平行板电容器,通常设定上板电势为 𝑉+V+​,下板电势为 𝑉−V−​,边界条件可以是 Dirichlet 边界条件,即直接指定边界上的电势值。中间区域(不包括电极部分)的每个点通过上述差分方程连接起来形成线性系统。

解这个代数方程组通常需要采用数值线性代数技术,比如高斯消元法、迭代法(如雅可比迭代或高斯-赛德尔迭代)等。对于大规模问题,迭代求解器配合预处理技术(如多重网格方法)可能更高效。

总结步骤如下:

  1. 定义问题域:建立计算域并决定网格划分,确保网格足够细密以准确捕捉电势的变化。
  2. 应用差分公式:根据中心差分公式将拉普拉斯方程转换为差分方程。
  3. 设置边界条件:根据电容器的物理情况设置电势的边界条件。
  4. 构建矩阵方程:基于差分方程构建系数矩阵和右侧向量,形成代数方程组。
  5. 求解线性系统:使用合适的数值方法求解得到电势分布 𝑉𝑖,𝑗Vi,j​ 的数值解。
  6. 分析结果:对解进行分析,例如计算电场强度 𝐸=−∇𝑉E=−∇V。

这种方法是理解及模拟二维电场分布的一个基本而有效的方法。

📚2 运行结果

一个图中显示了电势的等值线图。第二个图显示了电场大小的详细等值线图,而第三个图则显示了方向向量作为箭头图。

部分代码:

for z = 1:Ni    % Number of iterations
        
        for i=2:Nx-1
        for j=2:Ny-1      
            
            % The next two lines are meant to force the matrix to hold the 
            % potential values for all iterations
            
                V(pp1,mpy-lp:mpy+lp) = 100;
                V(pp2,mpy-lp:mpy+lp) = -100;
                
                V(i,j)=0.25*(V(i+1,j)+V(i-1,j)+V(i,j+1)+V(i,j-1));
        end
        end
        
end

% Take transpose for proper x-y orientation
V = V';

[Ex,Ey]=gradient(V);
Ex = -Ex;
Ey = -Ey;

% Electric field Magnitude
 E = sqrt(Ex.^2+Ey.^2);  

x = (1:Nx)-mpx;
y = (1:Ny)-mpy;

% Contour Display for electric potential
figure(1)
contour_range_V = -101:0.5:101;
contour(x,y,V,contour_range_V,'linewidth',0.5);
axis([min(x) max(x) min(y) max(y)]);
colorbar('location','eastoutside','fontsize',14);
xlabel('x-axis in meters','fontsize',14);
ylabel('y-axis in meters','fontsize',14);
title('Electric Potential distribution, V(x,y) in volts','fontsize',14);
h1=gca;
set(h1,'fontsize',14);
fh1 = figure(1); 
set(fh1, 'color', 'white')


% Contour Display for electric field
figure(2)
contour_range_E = -20:0.05:20;
contour(x,y,E,contour_range_E,'linewidth',0.5);
axis([min(x) max(x) min(y) max(y)]);
colorbar('location','eastoutside','fontsize',14);
xlabel('x-axis in meters','fontsize',14);
ylabel('y-axis in meters','fontsize',14);
title('Electric field distribution, E (x,y) in V/m','fontsize',14);
h2=gca;
set(h2,'fontsize',14);
fh2 = figure(2); 
set(fh2, 'color', 'white')

% Quiver Display for electric field Lines
figure(3)
contour(x,y,E,'linewidth',0.5);
hold on, quiver(x,y,Ex,Ey,2)
title('Electric field Lines, E (x,y) in V/m','fontsize',14);
axis([min(x) max(x) min(y) max(y)]);
colorbar('location','eastoutside','fontsize',14);
xlabel('x-axis in meters','fontsize',14);
ylabel('y-axis in meters','fontsize',14);
h3=gca;
set(h3,'fontsize',14);
fh3 = figure(3); 
set(fh3, 'color', 'white')

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]孙元章,吴俊,李国杰,等.基于风速预测和随机规划的含风电场电力系统动态经济调度[J].中国电机工程学报, 2009(4):7.DOI:CNKI:SUN:ZGDC.0.2009-04-008.

[2]谢维,陆宇洋,童孝忠,等.基于有限差分法的均匀电场二维正演模拟[J].工程地球物理学报, 2023, 20(4):529-537.

[3]林向会,谢本亮.基于MATLAB的电磁场二维场域有限差分法分析[J].新一代信息技术, 2019, 2(22):8.

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 9
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值