👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
随着信息时代的发展,无人车的功能日渐丰富,在物流运输、室内清洁与安防巡检等领域发挥重要作用。特别是在安防巡检领域,无人车可替代人工巡检,并有效的节省人力资源,提高巡检的安全性。
无人驾驶地面车辆(无人车)的避障研究是自动驾驶技术领域的一个重要课题。避障技术是指无人车在行驶过程中能够识别并绕过障碍物,确保车辆安全行驶。这项技术主要依赖传感器数据的获取与处理、环境感知、路径规划和控制等多方面的技术综合。
无人车避障的关键技术
1. **传感器技术**:
- **激光雷达(LiDAR)**:提供高精度的三维环境数据,能够精准识别车辆周围的障碍物。
- **摄像头**:捕捉环境的图像信息,用于目标检测和分类。
- **毫米波雷达**:用于探测车辆前方的障碍物,尤其适用于恶劣天气条件下。
- **超声波传感器**:用于近距离障碍物的检测。
2. **环境感知**:
- **目标检测与识别**:通过深度学习算法,如卷积神经网络(CNN),无人车可以识别前方的行人、车辆、交通标志等。
- **障碍物定位**:利用传感器数据进行障碍物的位置估计和跟踪。
3. **路径规划**:
- **全局路径规划**:基于预先设定的地图数据,规划从起点到终点的最优路径。
- **局部路径规划**:在行驶过程中,根据实时环境数据调整行驶路径,避开障碍物。
4. **控制系统**:
- **运动控制**:根据路径规划的结果,控制车辆的转向、加速、减速等操作。
- **决策系统**:结合感知和规划信息,做出实时决策,确保行驶安全。
常见的避障算法
1. **基于栅格地图的方法**:
- 将环境离散化为栅格地图,通过算法计算每个栅格的可行性,进而规划避障路径。
2. **基于动态窗口的方法(DWA)**:
- 在实时动态窗口中评估不同速度和转向角组合的可行性,选择最优组合实现避障。
3. **基于采样的路径规划算法**:
- 如快速扩展随机树(RRT)和A*算法,通过在环境中采样生成路径,选取最优路径避开障碍物。
遇到的挑战
- **实时性要求**:避障决策需要在极短的时间内完成,对计算速度和效率有较高要求。
- **多传感器数据融合**:需要将不同传感器的数据进行有效融合,减少误差,提高环境感知的准确性。
- **复杂环境适应性**:无人车需在各种复杂环境下(如城市街道、高速公路、恶劣天气)都能有效避障。
未来发展方向
- **高效算法**:开发更高效的避障算法,提升计算速度和避障效果。
- **智能传感器**:提高传感器的智能化水平,增强环境感知能力。
- **自主学习能力**:利用机器学习和人工智能技术,使无人车具备自主学习和适应新环境的能力。
- **系统集成**:加强避障系统与其他自动驾驶系统的集成,提升整体系统的可靠性和稳定性。
一、引言
无人驾驶地面车辆(UGV)是自动驾驶技术的重要应用领域之一,其核心在于实现车辆的自主导航、环境感知、决策规划与控制执行。避障作为UGV的关键技术之一,对于保障车辆行驶安全、提高道路交通效率具有重要意义。
二、避障系统组成
无人驾驶地面车辆的避障系统主要由感知系统、决策系统和执行系统三大部分组成。
- 感知系统:通过激光雷达、摄像头、毫米波雷达、超声波传感器等多种传感器,实时获取车辆周围环境信息,包括障碍物位置、速度、形状等。
- 决策系统:基于感知系统获取的信息,结合高精度地图、交通规则、车辆动力学模型等,进行路径规划、决策制定,生成避障策略。
- 执行系统:根据决策系统的指令,控制车辆的行驶速度、方向、制动等,实现避障动作。
三、避障技术研究
- 传感器技术:传感器是避障系统的核心部件,其性能直接影响避障效果。目前,激光雷达因其高精度、高分辨率、抗干扰能力强等特点,在UGV避障中得到广泛应用。同时,毫米波雷达、摄像头等传感器也在不同场景下发挥着重要作用。
- 决策算法:决策算法是避障系统的关键。常用的决策算法包括模糊逻辑、神经网络、深度强化学习等。这些算法能够基于感知信息,对车辆行驶环境进行建模、预测,并生成最优避障策略。
- 控制算法:控制算法负责将决策系统的指令转化为车辆的实际行动。常用的控制算法包括PID控制、模糊控制、最优控制等。这些算法能够确保车辆在避障过程中保持稳定、准确。
四、避障系统评价
评价无人驾驶地面车辆避障系统的性能,通常采用以下指标:
- 避障成功率:指车辆在不同场景下成功避开障碍物的比例。
- 避障距离:指车辆避开障碍物所需的最小距离。
- 避障时间:指车辆从感知到障碍物到成功避开障碍物所需的时间。
- 行驶稳定性:指车辆在避障过程中保持行驶稳定性的能力。
- 决策准确性:指决策系统制定避障策略的准确性。
五、挑战与展望
尽管无人驾驶地面车辆避障技术已经取得了显著进展,但仍面临诸多挑战:
- 复杂环境适应性:如何在复杂多变的道路环境中保持高效、准确的避障能力,是当前研究的重点。
- 传感器融合:多种传感器的融合使用,虽然可以提高感知精度和稳定性,但也带来了数据融合、处理等方面的挑战。
- 法规与伦理:随着无人驾驶技术的普及,相关的法规、伦理问题也日益凸显,如何制定合理的法规、伦理规范,保障无人驾驶车辆的安全行驶,是亟待解决的问题。
未来,随着传感器技术、决策算法、控制算法的不断进步,以及高精度地图、人工智能等技术的深入应用,无人驾驶地面车辆避障技术将迎来更加广阔的发展前景。
📚2 运行结果
部分代码:
clear all;
close all;
x = 0:0.2:0.2*(31-1);
y = 0:0.2:0.2*(100-1);
% goal point
% threat obstacle
for iter = 1 : 31
for iter_j = 1 : 99
cost(iter,iter_j) = (0.5*cos(x(iter))+0.6)*exp(-(y(iter_j)/y(iter_j+1)));
end
end
figure(2)
surf(y(1:99),x,cost);
% shading interp;
xlabel('distance (meter)')
ylabel('\theta (rad)')
zlabel('cost')
% agent
for iter = 1 : 31
for iter_j = 1 : 99
cost(iter,iter_j) = 0.3*(0.5*cos(x(iter))+0.6)*exp(-(y(iter_j)));
end
end
figure(3)
surf(y(1:99),x,cost);
% shading interp;
xlabel('distance (meter)')
ylabel('\theta (rad)')
zlabel('cost')
% swarm
for iter = 1 : 31
for iter_j = 1 : 99
cost_goal(iter,iter_j) = 1-exp(-(y(iter_j))/y(iter_j+1));
end
end
x = 0:0.2:0.2*(31-1);
y = 0:0.2:0.2*(100-1);
figure(4)
surf(y(1:99),x,cost_goal);
% shading interp;
xlabel('distance (meter)')
ylabel('\theta (radian)')
zlabel('cost')
clear all;
close all;
x = 0:0.2:0.2*(31-1);
y = 0:0.2:0.2*(100-1);
% goal point
% threat obstacle
for iter = 1 : 31
for iter_j = 1 : 99
cost(iter,iter_j) = (0.5*cos(x(iter))+0.6)*exp(-(y(iter_j)/y(iter_j+1)));
end
end
figure(2)
surf(y(1:99),x,cost);
% shading interp;
xlabel('distance (meter)')
ylabel('\theta (rad)')
zlabel('cost')
% agent
for iter = 1 : 31
for iter_j = 1 : 99
cost(iter,iter_j) = 0.3*(0.5*cos(x(iter))+0.6)*exp(-(y(iter_j)));
end
end
figure(3)
surf(y(1:99),x,cost);
% shading interp;
xlabel('distance (meter)')
ylabel('\theta (rad)')
zlabel('cost')
% swarm
for iter = 1 : 31
for iter_j = 1 : 99
cost_goal(iter,iter_j) = 1-exp(-(y(iter_j))/y(iter_j+1));
end
end
x = 0:0.2:0.2*(31-1);
y = 0:0.2:0.2*(100-1);
figure(4)
surf(y(1:99),x,cost_goal);
% shading interp;
xlabel('distance (meter)')
ylabel('\theta (radian)')
zlabel('cost')
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]王桢发. 无人车巡检路径规划研究[D].南京邮电大学,2022.DOI:10.27251/d.cnki.gnjdc.2022.000481.
[2]李凤娇.无人驾驶车辆综合避障行为研究与评价[D].北京理工大学,2015.
[3]朱麒融.无人驾驶汽车避障方法探析[J].科技资讯, 2016(21).DOI:10.16661/j.cnki.1672-3791.2016.21.053.