【无人车】无人驾驶地面车辆避障研究(Matlab代码实现)

👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、引言

二、避障系统组成

三、避障技术研究

四、避障系统评价

五、挑战与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

随着信息时代的发展,无人车的功能日渐丰富,在物流运输、室内清洁与安防巡检等领域发挥重要作用。特别是在安防巡检领域,无人车可替代人工巡检,并有效的节省人力资源,提高巡检的安全性。

无人驾驶地面车辆(无人车)的避障研究是自动驾驶技术领域的一个重要课题。避障技术是指无人车在行驶过程中能够识别并绕过障碍物,确保车辆安全行驶。这项技术主要依赖传感器数据的获取与处理、环境感知、路径规划和控制等多方面的技术综合。

无人车避障的关键技术

1. **传感器技术**:
    - **激光雷达(LiDAR)**:提供高精度的三维环境数据,能够精准识别车辆周围的障碍物。
    - **摄像头**:捕捉环境的图像信息,用于目标检测和分类。
    - **毫米波雷达**:用于探测车辆前方的障碍物,尤其适用于恶劣天气条件下。
    - **超声波传感器**:用于近距离障碍物的检测。

2. **环境感知**:
    - **目标检测与识别**:通过深度学习算法,如卷积神经网络(CNN),无人车可以识别前方的行人、车辆、交通标志等。
    - **障碍物定位**:利用传感器数据进行障碍物的位置估计和跟踪。

3. **路径规划**:
    - **全局路径规划**:基于预先设定的地图数据,规划从起点到终点的最优路径。
    - **局部路径规划**:在行驶过程中,根据实时环境数据调整行驶路径,避开障碍物。

4. **控制系统**:
    - **运动控制**:根据路径规划的结果,控制车辆的转向、加速、减速等操作。
    - **决策系统**:结合感知和规划信息,做出实时决策,确保行驶安全。

常见的避障算法

1. **基于栅格地图的方法**:
    - 将环境离散化为栅格地图,通过算法计算每个栅格的可行性,进而规划避障路径。

2. **基于动态窗口的方法(DWA)**:
    - 在实时动态窗口中评估不同速度和转向角组合的可行性,选择最优组合实现避障。

3. **基于采样的路径规划算法**:
    - 如快速扩展随机树(RRT)和A*算法,通过在环境中采样生成路径,选取最优路径避开障碍物。

遇到的挑战

- **实时性要求**:避障决策需要在极短的时间内完成,对计算速度和效率有较高要求。
- **多传感器数据融合**:需要将不同传感器的数据进行有效融合,减少误差,提高环境感知的准确性。
- **复杂环境适应性**:无人车需在各种复杂环境下(如城市街道、高速公路、恶劣天气)都能有效避障。

未来发展方向

- **高效算法**:开发更高效的避障算法,提升计算速度和避障效果。
- **智能传感器**:提高传感器的智能化水平,增强环境感知能力。
- **自主学习能力**:利用机器学习和人工智能技术,使无人车具备自主学习和适应新环境的能力。
- **系统集成**:加强避障系统与其他自动驾驶系统的集成,提升整体系统的可靠性和稳定性。

一、引言

无人驾驶地面车辆(UGV)是自动驾驶技术的重要应用领域之一,其核心在于实现车辆的自主导航、环境感知、决策规划与控制执行。避障作为UGV的关键技术之一,对于保障车辆行驶安全、提高道路交通效率具有重要意义。

二、避障系统组成

无人驾驶地面车辆的避障系统主要由感知系统、决策系统和执行系统三大部分组成。

  1. 感知系统:通过激光雷达、摄像头、毫米波雷达、超声波传感器等多种传感器,实时获取车辆周围环境信息,包括障碍物位置、速度、形状等。
  2. 决策系统:基于感知系统获取的信息,结合高精度地图、交通规则、车辆动力学模型等,进行路径规划、决策制定,生成避障策略。
  3. 执行系统:根据决策系统的指令,控制车辆的行驶速度、方向、制动等,实现避障动作。

三、避障技术研究

  1. 传感器技术:传感器是避障系统的核心部件,其性能直接影响避障效果。目前,激光雷达因其高精度、高分辨率、抗干扰能力强等特点,在UGV避障中得到广泛应用。同时,毫米波雷达、摄像头等传感器也在不同场景下发挥着重要作用。
  2. 决策算法:决策算法是避障系统的关键。常用的决策算法包括模糊逻辑、神经网络、深度强化学习等。这些算法能够基于感知信息,对车辆行驶环境进行建模、预测,并生成最优避障策略。
  3. 控制算法:控制算法负责将决策系统的指令转化为车辆的实际行动。常用的控制算法包括PID控制、模糊控制、最优控制等。这些算法能够确保车辆在避障过程中保持稳定、准确。

四、避障系统评价

评价无人驾驶地面车辆避障系统的性能,通常采用以下指标:

  1. 避障成功率:指车辆在不同场景下成功避开障碍物的比例。
  2. 避障距离:指车辆避开障碍物所需的最小距离。
  3. 避障时间:指车辆从感知到障碍物到成功避开障碍物所需的时间。
  4. 行驶稳定性:指车辆在避障过程中保持行驶稳定性的能力。
  5. 决策准确性:指决策系统制定避障策略的准确性。

五、挑战与展望

尽管无人驾驶地面车辆避障技术已经取得了显著进展,但仍面临诸多挑战:

  1. 复杂环境适应性:如何在复杂多变的道路环境中保持高效、准确的避障能力,是当前研究的重点。
  2. 传感器融合:多种传感器的融合使用,虽然可以提高感知精度和稳定性,但也带来了数据融合、处理等方面的挑战。
  3. 法规与伦理:随着无人驾驶技术的普及,相关的法规、伦理问题也日益凸显,如何制定合理的法规、伦理规范,保障无人驾驶车辆的安全行驶,是亟待解决的问题。

未来,随着传感器技术、决策算法、控制算法的不断进步,以及高精度地图、人工智能等技术的深入应用,无人驾驶地面车辆避障技术将迎来更加广阔的发展前景。

📚2 运行结果

 

部分代码:

clear all;
close all;

x = 0:0.2:0.2*(31-1);
y = 0:0.2:0.2*(100-1);

% goal point

% threat obstacle

for iter = 1 : 31
    for iter_j = 1 : 99
        cost(iter,iter_j) = (0.5*cos(x(iter))+0.6)*exp(-(y(iter_j)/y(iter_j+1)));
    end
end

figure(2)
surf(y(1:99),x,cost);
% shading interp;
xlabel('distance (meter)')
ylabel('\theta (rad)')
zlabel('cost')

% agent

for iter = 1 : 31
    for iter_j = 1 : 99
        cost(iter,iter_j) = 0.3*(0.5*cos(x(iter))+0.6)*exp(-(y(iter_j)));
    end
end

figure(3)
surf(y(1:99),x,cost);
% shading interp;
xlabel('distance (meter)')
ylabel('\theta (rad)')
zlabel('cost')

% swarm


for iter = 1 : 31
    for iter_j = 1 : 99
        cost_goal(iter,iter_j) = 1-exp(-(y(iter_j))/y(iter_j+1));
    end
end

x = 0:0.2:0.2*(31-1);
y = 0:0.2:0.2*(100-1);

figure(4)
surf(y(1:99),x,cost_goal);
% shading interp;
xlabel('distance (meter)')
ylabel('\theta (radian)')
zlabel('cost')

clear all;
close all;

x = 0:0.2:0.2*(31-1);
y = 0:0.2:0.2*(100-1);

% goal point

% threat obstacle

for iter = 1 : 31
    for iter_j = 1 : 99
        cost(iter,iter_j) = (0.5*cos(x(iter))+0.6)*exp(-(y(iter_j)/y(iter_j+1)));
    end
end

figure(2)
surf(y(1:99),x,cost);
% shading interp;
xlabel('distance (meter)')
ylabel('\theta (rad)')
zlabel('cost')

% agent

for iter = 1 : 31
    for iter_j = 1 : 99
        cost(iter,iter_j) = 0.3*(0.5*cos(x(iter))+0.6)*exp(-(y(iter_j)));
    end
end

figure(3)
surf(y(1:99),x,cost);
% shading interp;
xlabel('distance (meter)')
ylabel('\theta (rad)')
zlabel('cost')

% swarm


for iter = 1 : 31
    for iter_j = 1 : 99
        cost_goal(iter,iter_j) = 1-exp(-(y(iter_j))/y(iter_j+1));
    end
end

x = 0:0.2:0.2*(31-1);
y = 0:0.2:0.2*(100-1);

figure(4)
surf(y(1:99),x,cost_goal);
% shading interp;
xlabel('distance (meter)')
ylabel('\theta (radian)')
zlabel('cost')
 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]王桢发. 无人车巡检路径规划研究[D].南京邮电大学,2022.DOI:10.27251/d.cnki.gnjdc.2022.000481.

[2]李凤娇.无人驾驶车辆综合避障行为研究与评价[D].北京理工大学,2015.

[3]朱麒融.无人驾驶汽车避障方法探析[J].科技资讯, 2016(21).DOI:10.16661/j.cnki.1672-3791.2016.21.053.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值