💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
光伏系统MPPT与恒功率控制切换的Simulink仿真研究
光伏系统在储能并网发电过程中可以采用多种控制方式,其中包括最大功率点追踪(MPPT)和恒功率输出两种模式。根据储能电池的状态(SOC)的不同工作区间,光伏系统可以智能地切换控制模式,以实现最佳的能源利用和系统稳定性。
在光伏系统中,当储能电池处于较为健康的工作范围时,光伏系统将处于MPPT模式。该模式通过使用优化算法,实时追踪太阳能电池组输出的最大功率点,以最大化系统的发电效率和能源产出。
然而,当储能电池处于极限工况时,光伏系统将切换至恒功率输出模式,以保证系统的稳定运行。在恒功率模式下,系统将光伏电池通过升压器(boost)连接到公共点,并通过使用boost-buck双向变流器将储能部分连接到公共点。这种连接方式可以实现能量的双向流动,充分利用光伏发电和储能电池的能源,满足电网需求。
为了实现对光伏系统的精确控制,采用了逆变器模块化控制。该控制方式通过控制公共直流母线的电压保持不变,实现对光伏系统的整体控制。这样的控制策略可以确保系统的稳定性和可靠性,并提供高效的能源转换和供应。
光伏系统在储能并网发电模型中可以根据储能电池的状态智能切换MPPT和恒功率输出两种控制方式。通过适时切换,并结合模块化控制,系统能够最大程度地利用可再生能源,并实现系统的高效运行和电力稳定输出。这种光伏储能并网发电模型对于推动可再生能源的发展和构建可持续的能源系统具有重要意义。
一、研究背景与意义
随着光伏发电系统渗透率的提升,MPPT与恒功率控制(CPG)的协同运行成为平衡发电效率与电网稳定性的关键技术。MPPT通过动态跟踪最大功率点(MPP)实现能量捕获最大化,而CPG则根据电网需求限制输出功率。两者切换策略的设计直接影响系统效率、动态响应和鲁棒性。
二、基本原理与算法
1. MPPT控制模块
- 核心原理:通过调节DC-DC变换器的占空比(D),使光伏阵列工作于非线性P-V曲线的峰值点。Boost拓扑因结构简单、效率高(>95%)成为主流选择。
- 关键算法:
- 扰动观察法(P&O) :基于功率变化方向调整电压步长,实现快速追踪但存在稳态振荡(典型步长ΔV=0.5V)。
- 电导增量法(Incremental Conductance) :利用dP/dV=0的条件判断MPP,精度更高但计算复杂。
- 自适应算法(如ABES):结合秃鹰搜索优化步长,减少环境突变时的误判。
- Simulink实现:
- 模块组成:电压/电流采样→乘法器(计算P)→比较器(ΔP判断)→PWM生成器(调节D)。
- 参数设置:Boost电路电感L=1.15mH,电容C1=0.01mF,C2=0.47mF,开关频率10kHz。
- 模块组成:电压/电流采样→乘法器(计算P)→比较器(ΔP判断)→PWM生成器(调节D)。
2. 恒功率控制模块
- 实现方法:
- 功率闭环(P-CPG) :外环功率误差→PI调节→电流参考值→内环电流跟踪。
- 电流限制(I-CPG) :直接设定电流阈值,响应快但易失稳。
- P&O-CPG:通过修正扰动方向将功率限制在设定值,鲁棒性强。
- 应用场景:
- 电网低负荷时限制出力(如设定P_limit=80% P_MPP)。
- 光储协同系统中配合储能实现平滑输出(蓄电池采用恒功率控制,超级电容稳压)。
三、切换策略设计
1. 触发条件
- 功率阈值法:当P_MPP > P_set时切换至CPG,反之恢复MPPT(需设置5-10%迟滞带防振荡)。
- 外部指令优先:接收电网调度信号强制切换(如FRT期间)。
2. 过渡控制
- 状态机管理:
- MPPT→CPG:逐步提升V_pv至P_set对应电压(斜率控制dP/dt≤5%/s)。
- CPG→MPPT:引入虚拟MPP预测算法,避免跌落至低效区。
- 混合控制:在切换过渡期采用加权控制(如α·MPPT + (1-α)·CPG,α从1→0)。
3. 抗干扰设计
- 死区补偿:在P_set±2%范围内冻结切换,抑制辐照度波动影响。
- 动态步长调整:根据ΔP/Δt自动缩放步长,提升突变环境适应性。
四、Simulink仿真建模
1. 系统架构(图1)
光伏阵列 → Boost变换器 → 切换控制器 → 负载/电网
↑ ↑
MPPT模块 CPG模块
2. 关键模块参数
模块 | 参数设置 | 来源 |
---|---|---|
光伏阵列 | 4×STP0950S-36串联,V_oc=150V | |
Boost变换器 | L=1.15mH, C=470μF, f_sw=10kHz | |
P&O算法 | ΔV=0.5V, 采样周期0.1ms | |
CPG-PI调节器 | Kp=0.8, Ki=0.05 |
3. 切换逻辑实现(图2)
五、仿真案例分析
案例1:辐照度突变(1000→800 W/m²)
- MPPT性能:追踪延迟<50ms,稳态效率>98%。
- 切换响应:CPG在200ms内稳定输出,超调量<3%。
案例2:恒功率限值调整(P_set从1kW→1.2kW)
- 动态特性:过渡时间150ms,电压波动<5%。
性能评估指标
指标 | 计算公式 | 目标值 |
---|---|---|
性能比(PR) | P_actual / (P_STC × G/G_STC) | >85% |
切换成功率 | 成功次数 / 总切换次数 | >99% |
功率波动率 | (P_max - P_min)/P_avg | <5% |
六、结论与展望
本研究通过Simulink验证了MPPT-CPG切换策略的有效性,未来可拓展方向包括:
- 智能切换算法:引入LSTM预测辐照度变化趋势。
- 多目标优化:结合电价信号动态调整P_set。
- 硬件在环验证:基于dSPACE平台实现实时控制。
📚2 运行结果
2.1 主体仿真模型
2.2 光伏功率控制部分
2.3 光照及温度变化曲线
2.4 MPPT控制仿真波形曲线
2.5 恒功率控制仿真波形曲线
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]彭访,周香,宫海晓.适用于光伏发电系统的神经网络最大功率点跟踪控制器研究[J].机床与液压, 2019, 47(18):132-137.
[2]郭海霞石明垒李娟.基于matlab光伏发电系统的MPPT控制与仿真[J].山西农业大学学报(自然科学版), 2013, 033(001):76-81,92.
[3]景会成,徐来立,李静,等.基于SIMULINK的光伏电池模型及模糊算法MPPT系统仿真[J].华北理工大学学报(自然科学版), 2016.DOI:CNKI:SUN:HBLG.0.2016-03-016.