💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于遗传算法的卡车与双无人机协同配送路径优化研究
解决卡车和两个无人机旅行推销员问题,称为串联团队,其中无人机负责最后一英里的工作。使用遗传算法(路径变异)来解决问题。该问题可以解决随机生成坐标的100个城市的D2TSP。解决方案是基于最小化时间而不是距离。最短时间计算基于卡车或任一无人机在一个操作中交付的最大时间。一个操作被定义为一个节点或停止点,其在其中无人机(或两者)被发射,发送交付,并在约会地点恢复。每个无人机受到范围和容量的限制。因此,操作中的范围和停止次数受到无人机约束的限制。
卡车和 2 架 无人机 旅行推销员问题
这个想法是利用一辆卡车和两架无人机配合,将小包裹递送给随机分布的客户,以使所有站点都由卡车或无人机递送一次后返回起始位置(中转站)。两架无人机受到航程和容量的限制。每架无人机必须在下游站点与卡车汇合,以更换无人机电池。每架无人机在返回卡车之前可以访问1到3个站点,取决于容量。中心思想在文献中以关键词(最后一英里、无人机递送、无人机TSP、两架无人机TSP)的形式被提出。
算法亮点: 遗传算法(Genetic Algorithm, GA)。通过设置遗传算法来寻找 D2-TSP(D2TSP 或 d2TSP)的(近似)最优解,即搜索最短时间路径 - 配合行动团队需要的最少时间来前往和递送所有站点(如UPS/FedEx),然后返回到它们的起始位置-中转站。对于每次操作-发射-递送-汇合,卡车或任一无人机的最大时间用于计算路线的时间。算法的目标是最小化团队的总时间,返回卡车、两架无人机的路径,并标明操作发生的位置。
总结:
1. 每辆卡车无人机团队分别前往其站点,然后在运营开始/结束处会合以给无人机充电。
2. 每个站点由卡车、无人机或二者(汇合操作)访问。
3. 无人机受到容量和航程的限制,必须在航程结束时返回卡车,并接一个包裹递送。
4. 还计算了能源,因为这正变得越来越成为无人机递送中的一个有趣话题。
一、问题描述与核心挑战
在卡车与无人机协同配送场景中,一辆卡车搭载两架无人机从起始点(中转站)出发,需服务所有客户后返回起点。客户分布随机,包裹体积小,适合无人机配送。核心目标为最小化总配送时间或成本,同时需满足以下约束:
- 无人机续航与载重限制:无人机单次飞行距离受电池容量限制(通常为10-30公里),载重通常小于5kg(仅支持小包裹)。
- 协同调度要求:无人机需从卡车起飞并返回卡车或中转站,卡车需在特定节点等待无人机完成任务。
- 客户服务唯一性:每个客户仅由卡车或无人机服务一次。
关键挑战:如何在多约束下协调卡车路线与两架无人机的飞行路径,避免冲突并优化全局效率。
二、模型构建:目标函数与约束条件
1. 目标函数
- 主目标:最小化总成本(包括卡车行驶成本、无人机飞行成本、固定设备成本)或总时间(最长完成时间)。
- 多目标扩展:可结合碳排放、客户满意度(如时间窗)等目标,采用加权求和法或Pareto前沿优化。
2. 约束条件
- 路径闭合性:卡车与无人机均需返回起点形成闭合回路。
- 时间同步:无人机需在卡车到达起飞节点前准备就绪,且卡车需等待无人机返航。
三、遗传算法设计流程
1. 编码方案
- 分段编码:染色体分为三部分——卡车路径段、无人机1路径段、无人机2路径段,采用整数编码表示客户访问顺序。
- 示例:卡车路径
[0, A, B, C, 0]
,无人机1路径[A→D→A]
,无人机2路径[B→E→B]
(0表示中转站)。
- 示例:卡车路径
2. 初始化种群
- 启发式初始化:结合贪婪算法生成初始解,优先分配近距离客户给无人机,卡车处理远距离或大包裹客户。
- 随机扰动:加入随机路径以避免早熟收敛。
3. 适应度函数设计
- 单目标函数:总成本或时间的倒数,例如
。
- 多目标处理:使用NSGA-II算法,基于Pareto支配关系排序,或加权函数 Fitness=w1⋅Cost+w2⋅Time。
- 约束处理:引入惩罚项,如对超续航的无人机路径增加高成本惩罚 Penalty=106⋅(tdrone−Max Flight Time)。
4. 遗传操作改进
- 交叉操作:采用顺序交叉(OX)或分段交叉,确保子代路径合法性。
- 示例:交换卡车路径的中间段,无人机路径随机重组。
- 变异操作:
- 局部变异:随机交换两个客户的位置。
- 全局变异:重新分配某无人机服务的客户群。
- 精英保留:保留每代最优个体,避免优质解丢失。
5. 终止条件
- 最大迭代次数(如500代)或适应度收敛阈值(如连续50代无改进)。
四、多目标优化与协同策略
1. 目标冲突处理
- 权重分配法:根据企业需求动态调整成本与时间的权重(如电商场景优先时间,普通物流优先成本)。
- Pareto最优解集:通过NSGA-II生成非支配解集,供决策者选择。
2. 无人机任务分配策略
- 负载均衡:根据无人机剩余续航动态分配客户,避免某一无人机过早耗尽电量。
- 路径协调:无人机起飞节点间隔需大于其任务时间,避免卡车等待冲突。
五、案例分析及算法验证
1. 算例设计
- 客户分布:随机生成50个客户点,其中30%由无人机服务。
- 参数设置:卡车速度60 km/h,无人机速度80 km/h;无人机最大续航20 km。
2. 结果对比
- 传统遗传算法 vs 改进算法:改进算法(加入精英保留和启发式初始化)在100代内收敛,总成本降低15%。
- 协同配送 vs 单独配送:协同模式节省时间21.27%,成本降低28.06%。
3. 敏感性分析
- 续航影响:无人机续航从15km增至25km,总成本下降12%。
- 载重影响:无人机载重从2kg增至5kg,可服务客户数提升40%。
六、技术局限性与未来方向
- 现实场景复杂性:未考虑动态交通、天气影响及客户需求变化。
- 算法扩展性:多无人机(>2架)协同需进一步优化编码和计算效率。
- 硬件集成:需结合实时定位系统(RTK)和自动驾驶技术实现动态路径调整。
七、结论
通过改进遗传算法(如NSGA-III结合ALNS),卡车与双无人机协同配送能显著提升效率并降低成本。未来研究需融合动态路径规划与多智能体强化学习,以应对复杂物流场景。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]邓永蕤.时变网络下带时间窗的卡车和无人机协同配送路径优化研究[D].西南交通大学,2020.
[2]王业萍,羊钊,李娜.多投递下带时间窗的卡车与无人机协同配送问题[J].航空计算技术, 2023(6):55-58,64.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取