Eckart-Young-Mirsky theorem

定理:

(The Eckhart-Young Theorem) If k < r = r a n k ( A ) k<r = rank(A) k<r=rank(A) and
A k = ∑ i = 1 k σ i μ i ν i ⊤ A_k=\sum_{i=1}^k \sigma_i\mu_i\nu_i^{\top} Ak=i=1kσiμiνi
then
min ⁡ r a n k ( B ) = k ∣ ∣ A − B ∣ ∣ 2 = ∣ ∣ A − A k ∣ ∣ 2 = σ k + 1 \min_{rank(B)=k} ||A-B||_2=||A-A_k||_2=\sigma_{k+1} rank(B)=kminAB2=AAk2=σk+1

证明:
Since U ⊤ A k V = d i a g ( σ 1 , ⋯   , σ k , 0 , ⋯   , 0 ) U^{\top}A_kV=diag(\sigma_1,\cdots,\sigma_k,0,\cdots,0) UAkV=diag(σ1,,σk,0,,0) it follows that A k A_k Ak is rank k. Moreover, U ⊤ ( A − A k ) V = d i a g ( 0 , ⋯   , 0 , σ k + 1 , ⋯   , σ p ) U^{\top}(A-A_k)V=diag(0,\cdots,0,\sigma_{k+1},\cdots,\sigma_p) U(AAk)V=diag(0,,0,σk+1,,σp) and so ∣ ∣ A − A k ∣ ∣ 2 = σ k + 1 ||A-A_k||_2=\sigma_{k+1} AAk2=σk+1.
Now suppose r a n k ( B ) = k rank(B) = k rank(B)=k for some B ∈ R m × n B\in \mathbb{R}^{m\times n} BRm×n. It follows that we can find orthonormal vectors x 1 , . . . , x n − k x_1 , ... , x_{n-k} x1,...,xnk so n u l l ( B ) = s p a n { x 1 , . . . , x n − k } null (B) = span\{x_1 , ... , x_{n-k}\} null(B)=span{x1,...,xnk}· A dimension argument shows that
span { x 1 , ⋯   , x n − k } ∩ span { v 1 , ⋯   , v k + 1 } ≠ { 0 } . \text{span}\{x_1,\cdots,x_{n-k}\}\cap\text{span}\{v_1,\cdots,v_{k+1}\}\neq\{0\}. span{x1,,xnk}span{v1,,vk+1}={0}.
Let z be a unit 2-norm vector in this intersection. Since B z = 0 Bz = 0 Bz=0 and
A z = ∑ i = 1 k + 1 σ i ( v i ⊤ z ) u i , Az=\sum_{i=1}^{k+1}\sigma_i(v_i^{\top}z)u_i, Az=i=1k+1σi(viz)ui,
we have
∣ ∣ A − B ∣ ∣ 2 2 ≥ ∣ ∣ ( A − B ) z ∣ ∣ 2 2 = ∣ ∣ A z ∣ ∣ 2 2 = ∑ i = 1 k + 1 σ i 2 ( v i ⊤ z ) 2 ≥ σ k + 1 2 ||A-B||_2^2\geq||(A-B)z||_2^2=||Az||_2^2=\sum_{i=1}^{k+1}\sigma_i^2(v_i^{\top}z)^2\geq\sigma_{k+1}^2 AB22(AB)z22=Az22=i=1k+1σi2(viz)2σk+12
completing the proof of the theorem.

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
DTLZ3是一个多目标优化问题,其MATLAB代码如下: ``` function [F, G] = DTLZ3(x, M) % DTLZ3 test problem % x : design variable vector % M : number of objectives % F : objective vector % G : constraint vector % % The problem has M-1 constraints. The first M-1 objectives are % unconstrained, and the last one is constrained. % % Example: % [F, G] = DTLZ3([0.5, 0.5], 3); % % References: % [1] Kalyanmoy Deb and Lothar Thiele and Marco Laumanns and Eckart Zitzler % "Scalable Multi-Objective Optimization Test Problems" % CEC 2002, p. 825 - 830, IEEE Press, 2002. % [2] Kalyanmoy Deb and Samir Agrawal and Amrit Pratap and T Meyarivan % "A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II" % IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002. n = length(x); k = n - M + 1; g = sum((x(M:end) - 0.5).^2); theta = zeros(1, M-1); for i = 1:M-1 theta(i) = pi / (4 * (1 + g)) * (1 + 2 * g * x(i)); end F = zeros(1, M); for i = 1:M F(i) = (1 + g) * cos(prod(theta(1:i-1))) * (i > 1) ... * sin(theta(i)); end G = []; end ``` 其中,输入参数`x`是决策变量向量,`M`是目标函数个数,输出参数`F`是目标函数向量,`G`是约束向量。 该函数实现了DTLZ3多目标优化测试问题的目标函数计算。对于该问题,前`M-1`个目标函数是无约束的,最后一个目标函数是有约束的。函数中,首先计算出一个中间变量`g`,然后计算出一个参数向量`theta`,最后计算出目标函数向量`F`。具体的计算过程可以参考参考文献[1]和[2]。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值