数学分析(十八)-隐函数定理及其应用1-隐函数3:隐函数可微性定理【F(x,y)=0所确定的隐函数y=f(x)的导数:f′(x)=-Fˣ(x,y)/Fʸ(x,y)】

本文介绍了数学分析中的隐函数定理,包括存在惟一性定理和可微性定理。定理18.1阐述了在满足特定条件时,隐函数如何在某区间内唯一确定并连续。定理18.2讨论了隐函数的可微性,证明了隐函数的导数可以通过偏导数关系计算,即f'(x) = -F'y/F'x,并给出了高阶导数的求解方法。
摘要由CSDN通过智能技术生成

F ( x , y ) = 0 , ( 1 ) F(x, y)=0, \quad\quad(1) F(x,y)=0,(1)

定理 18.1 (隐函数存在惟一性定理)

若函数 F ( x , y ) F(x, y) F(x,y) 满足下列条件:

  • (i) F F F 在以 P 0 ( x 0 , y 0 ) P_{0}\left(x_{0}, y_{0}\right) P0(x0,y0) 为内点的某一区域 D ⊂ R 2 D \subset \mathbf{R}^{2} DR2 上连续;
  • (ii) F ( x 0 , y 0 ) = 0 F\left(x_{0}, y_{0}\right)=0 F(x0,y0)=0 (通常称为初始条件);
  • (iii) F F F D D D 上存在连续的偏导数 F y ( x , y ) F_{y}(x, y) Fy(x,y);
  • (iv) F y ( x 0 , y 0 ) ≠ 0 F_{y}\left(x_{0}, y_{0}\right) \neq 0 Fy(x0,y0)=0.

  • 1 ∘ 1^{\circ} 1:存在点 P 0 P_{0} P0 的某邻域 U ( P 0 ) ⊂ D U\left(P_{0}\right) \subset D U(P0)D, 在 U ( P 0 ) U\left(P_{0}\right) U(P0) 上方程 F ( x , y ) = 0 F(x, y)=0 F(x,y)=0 惟一地决定了一个定义在某区间 ( x 0 − α , x 0 + α ) \left(x_{0}-\alpha, x_{0}+\alpha\right) (x0α,x0+α) 上的 (隐) 函数 y = f ( x ) y=f(x) y=f(x), 使得当 x ∈ ( x 0 − α , x 0 + α ) x \in\left(x_{0}-\alpha, x_{0}+\alpha\right) x(x0α,x0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值