VRPTW:新雀优化算法NOA求解带时间窗的车辆路径问题

一、新雀优化算法NOA求解带时间窗的车辆路径问题

1.1VRPTW模型如下:

带时间窗的车辆路径问题(Vehicle Routing Problem with Time Windows, VRPTW)

1.2新雀优化算法NOA求解VRPTW

close all
clear 
clc
SearchAgents_no=30; % 种群大小
Function_name='F1'; 
Max_iteration=100; % 最大迭代次数
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
[fMin,bestX,curve]=NOA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);  %算法求解



%% 显示最终结果
Pos=ShowResult(bestX);
%% 画图
figure
plot(curve,'Color','g','linewidth',1.5)%semilogy
xlabel('迭代次数');
ylabel('路径成本');
grid on
box on
legend('NOA')
%% 保存数据
save curve curve
save bestX bestX

部分结果:

配送路线1:0->2->21->10->0 服务顾客数量:3 路径长度:96.65542 装载量:34

服务顾客2的起始时间:18.00000,结束时间:28.00000

服务顾客21的起始时间:38.44031,结束时间:48.44031

服务顾客10的起始时间:91.16033,结束时间:101.16033

抵达配送中心的时间:126.65542

配送路线2:0->7->0 服务顾客数量:1 路径长度:42.42641 装载量:5

服务顾客7的起始时间:21.21320,结束时间:31.21320

抵达配送中心的时间:52.42641

配送路线3:0->5->25->0 服务顾客数量:2 路径长度:105.14674 装载量:32

服务顾客5的起始时间:20.61553,结束时间:30.61553

服务顾客25的起始时间:81.60572,结束时间:91.60572

抵达配送中心的时间:125.14674

配送路线4:0->11->8->13->0 服务顾客数量:3 路径长度:95.79470 装载量:44

服务顾客11的起始时间:33.54102,结束时间:43.54102

服务顾客8的起始时间:67.70711,结束时间:77.70711

服务顾客13的起始时间:104.61436,结束时间:114.61436

抵达配送中心的时间:125.79470

配送路线5:0->9->4->0 服务顾客数量:2 路径长度:97.01562 装载量:35

服务顾客9的起始时间:32.01562,结束时间:42.01562

服务顾客4的起始时间:82.01562,结束时间:92.01562

抵达配送中心的时间:117.01562

配送路线6:0->16->24->0 服务顾客数量:2 路径长度:116.16353 装载量:22

服务顾客16的起始时间:29.15476,结束时间:39.15476

服务顾客24的起始时间:96.16353,结束时间:106.16353

抵达配送中心的时间:136.16353

配送路线7:0->14->15->6->1->0 服务顾客数量:4 路径长度:113.39314 装载量:41

服务顾客14的起始时间:32.01562,结束时间:42.01562

服务顾客15的起始时间:57.82701,结束时间:67.82701

服务顾客6的起始时间:93.32211,结束时间:103.32211

服务顾客1的起始时间:128.16159,结束时间:138.16159

抵达配送中心的时间:153.39314

配送路线8:0->18->0 服务顾客数量:1 路径长度:31.62278 装载量:12

服务顾客18的起始时间:15.81139,结束时间:25.81139

抵达配送中心的时间:41.62278

配送路线9:0->12->3->0 服务顾客数量:2 路径长度:48.54102 装载量:32

服务顾客12的起始时间:15.00000,结束时间:25.00000

服务顾客3的起始时间:36.18034,结束时间:46.18034

抵达配送中心的时间:68.54102

配送路线10:0->19->20->0 服务顾客数量:2 路径长度:94.05221 装载量:26

服务顾客19的起始时间:32.01562,结束时间:42.01562

服务顾客20的起始时间:72.42943,结束时间:82.42943

抵达配送中心的时间:114.05221

配送路线11:0->23->22->17->0 服务顾客数量:3 路径长度:122.37102 装载量:49

服务顾客23的起始时间:36.05551,结束时间:46.05551

服务顾客22的起始时间:57.23585,结束时间:67.23585

服务顾客17的起始时间:111.95721,结束时间:121.95721

抵达配送中心的时间:152.37102

配送路线总长度:963.18259

二、参考代码

### 使用遗传算法求解时间窗车辆路径问题 (VRPTW) #### 1. 问题描述 时间窗车辆路径问题(Vehicle Routing Problem with Time Windows, VRPTW)是一种经典的组合优化问题,在给定一组客户需和若干辆车的情况下,需确定每辆车的服务路线,使所有需得到满足的同时,最小化总的运输成本。每个客户有一个特定的时间窗口,即服务开始时间和结束时间。 对于此问题,遗传算法通过模拟自然选择过程中的进化机制来找到近似最优解。该方法利用种群中个体之间的竞争与合作关系逐步改进解决方案的质量[^1]。 #### 2. 遗传算法的关键组件 - **编码方案**: 将每一个可能的配送顺序表示成染色体形式; - **适应度函数**: 定义衡量单个解好坏的标准,通常是最小化总行程长度或其他目标指标; - **选择操作**: 根据适应度比例选取父代用于繁殖下一代; - **交叉算子**: 对选中的两个父母进行部分交换以生成的后代; - **变异运算**: 在一定概率下随机改变某些基因位点上的值; 这些组成部分共同作用于初始群体之上,经过多轮迭代最终收敛到较优的结果集。 #### 3. C1 数据集介绍及其特点 C1 是 Solomon 提供的一组标准测试实例之一,适用于评估不同类型的路由规划算法性能。这类数据集中包含了多个客户的地理位置坐标以及相应的需量和服务时间段约束条件。具体来说: - 地理位置分布较为紧凑; - 时间窗口设置相对宽松; - 总共有 100 个节点(包括起点仓库),其中前四个为虚拟站点不参与实际访问; 因此非常适合用来验证 GA 处理中小规模 VRPTW 的能力。 #### 4. Python 实现示例代码 下面给出一段简化版的Python程序框架,展示了如何应用上述原理构建针对 C1 类型问题的GA求解: ```python import numpy as np from random import randint class Individual(object): def __init__(self, chromosome=None): self.chromosome = chromosome or list(range(5, 101)) np.random.shuffle(self.chromosome) @property def fitness(self): ... def initialize_population(size=100): return [Individual() for _ in range(size)] def select_parents(population): total_fitness = sum(individual.fitness for individual in population) probabilities = [individual.fitness / total_fitness for individual in population] parent_indices = np.random.choice(len(population), size=2, p=probabilities).tolist() parents = [population[i] for i in parent_indices] return parents def crossover(parents): child_chromosomes = [] point_1, point_2 = sorted([randint(0, len(parents[0].chromosome)-1), randint(0, len(parents[1].chromosome)-1)]) segment_from_parent_one = set(parents[0].chromosome[point_1:point_2]) remaining_genes_in_other_parent = [gene for gene in parents[1].chromosome if gene not in segment_from_parent_one] new_child_chromosome_partially_filled_with_segment = ( remaining_genes_in_other_parent[:point_1] + list(segment_from_parent_one) + remaining_genes_in_other_parent[point_1:] ) child_chromosomes.append(new_child_chromosome_partially_filled_with_segment) # Repeat similar process to create second offspring from other segments of the same two parents. return [Individual(chromosome=c) for c in child_chromosomes] def mutate(child_individual, mutation_rate=.01): mutated_positions = {i for i in range(len(child_individual.chromosome)) if np.random.rand() < mutation_rate} while mutated_positions: pos_a, pos_b = tuple(mutated_positions)[:2] child_individual.chromosome[pos_a], child_individual.chromosome[pos_b] = \ child_individual.chromosome[pos_b], child_individual.chromosome[pos_a] mutated_positions -= {pos_a, pos_b} def evolve(): generation_count = 0 max_generations = 1000 pop_size = 100 population = initialize_population(pop_size) best_solution_found_so_far = min(population, key=lambda indv: -indv.fitness) while generation_count < max_generations and all( abs(best_solution_found_so_far.fitness-indv.fitness)/best_solution_found_so_far.fitness<1e-8 for indv in population): next_generation = [] elite_proportion = int(.1 * pop_size) elites = sorted(population, reverse=True, key=lambda indv: indv.fitness)[:elite_proportion] next_generation.extend(elites) non_elite_members_of_current_gen = [ member for index, member in enumerate(population) if index >= elite_proportion] children_to_add_this_round = [] while len(children_to_add_this_round)+len(next_generation)<pop_size: selected_pair_of_parents = select_parents(non_elite_members_of_current_gen) crossed_over_offspring = crossover(selected_pair_of_parents) for kid in crossed_over_offspring: mutate(kid) children_to_add_this_round.append(kid) next_generation += children_to_add_this_round current_best_among_newcomers = max((kid for kid in children_to_add_this_round), default=None, key=lambda k:k.fitness) if current_best_among_newcomers is not None and\ (-current_best_among_newcomers.fitness > -best_solution_found_so_far.fitness): best_solution_found_so_far=current_best_among_newcomers population = next_generation[:] generation_count+=1 evolve() print(f'Best solution found after {generation_count} generations:') for route in divide_into_routes(best_solution_found_so_far.chromosome): print(route) def divide_into_routes(solution_sequence): routes = [[]] capacity_remaining_on_vehicle = vehicle_capacity last_customer_visited_index = depot_location for customer_id in solution_sequence: demand_at_next_stop = demands[customer_id] travel_time_between_stops = distance_matrix[last_customer_visited_index][customer_id] arrival_time_at_next_stop = earliest_start_times[last_customer_visited_index]+travel_time_between_stops if arrival_time_at_next_stop>latest_end_times[customer_id]: continue elif capacity_remaining_on_vehicle-demand_at_next_stop>=0: routes[-1].append(customer_id) capacity_remaining_on_vehicle-=demand_at_next_stop service_duration_at_next_stop = time_spent_per_service_call departure_time_after_servicing = arrival_time_at_next
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值