基于highway-env的DDPG-pytorch自动驾驶实现

前言

在利用强化学习进行自动驾驶开发时,虽然目前已经有了CARLA、CARSIM、TORCS等一系列开发环境,但针对本硕等一些电脑配置不高的学生党来说,一个可编辑性高、上手难度不大、不吃配置的开发环境,用来进行算法验证是非常必要的。

环境的官方连接如下:

https://highway-env.readthedocs.io/en/latest/

优点

1、对电脑配置要求不高;

2、具有一定的车辆动力学模型;

3、可以按自己的需求绘制道路形状、改变车辆及道路的相关参数。

贡献

虽然官方文档给出了如何调用baseline库里的成熟模型的方法,但初学人员比较倾向于自己搭建调试网络。基于这一需求,结合目前主流的深度学习框架pytorch,利用DDPG算法给出了对车辆进行横、纵向控制的代码,相关代码仅搭建出可以跑通的结构,并未对网络参数进行详细调整,具体调参可根据自己的需要进行,这里仅给出跑通的框架。

代码

import math
import random
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Normal
import matplotlib.pyplot as plt
import pprint
import highway_env

use_cuda = torch.cuda.is_available()
print(use_cuda)
device   = torch.device("cuda" if use_cuda else "cpu")

class ValueNetwork(nn.Module):
    def __init__(self, num_inputs, num_actions, hidden_size ,init_w = 3e-3):
        super(ValueNetwork, self).__init__()

        self.linear1 = nn.Linear(num_inputs + num_actions, hidden_size)
        self.linear2 = nn.Linear(hidden_size, hidden_size)
        self.linear3 = nn.Linear(hidden_size, 1)

        self.linear3.weight.data.uniform_(-init_w,init_w)
        self.linear3.bias.data.uniform_(-init_w,init_w)

    def forward(self, state, action):
        x = torch.cat([state, action], 1)
        x = F.relu(self.linear1(x))
        x = F.relu(self.linear2(x))
        x = self.linear3(x)
        return x

class PolicyNetwork(nn.Module):
    def __init__(self, num_inputs, num_actions, hidden_size, init_w = 3e-3):
        super(PolicyNetwork, self).__init__()

        self.linear1 = nn.Linear(num_inputs, hidden_size)
        self.linear2 = nn.Linear(hidden_size, hidden_size)
        self.linear3 = nn.Linear(hidden_size, num_actions)

        # uniform_将tensor用从均匀分布中抽样得到的值填充。参数初始化
        self.linear3.weight.data.uniform_(-init_w, init_w)
        #也用用normal_(0, 0.1) 来初始化的,高斯分布中抽样填充,这两种都是比较有效的初始化方式
        self.linear3.bias.data.uniform_(-init_w, init_w)
        #其意义在于我们尽可能保持 每个神经元的输入和输出的方差一致。
        #使用 RELU(without BN) 激活函数时,最好选用 He 初始化方法,将参数初始化为服从高斯分布或者均匀分布的较小随机数
        #使用 BN 时,减少了网络对参数初始值尺度的依赖,此时使用较小的标准差(eg:0.01)进行初始化即可

        #但是注意DRL中不建议使用BN

    def forward(self, x):
        x = F.relu(self.linear1(x))
        x = F.relu(self.linear2(x))
        x = F.tanh(self.linear3(x))
        return x

    def get_action(self, state):
        state = torch.FloatTensor(state).unsqueeze(0).to(device)
        action = self.forward(state)
        return action.detach().cpu().numpy()[0]

class OUNoise(object):
    def __init__(self, action_space, mu=0.0, theta = 0.15, max_sigma = 0.3, min_sigma = 0.3, decay_period = 10000):#decay_period要根据迭代次数合理设置
        self.mu = mu
        self.theta = theta
        self.sigma = max_sigma
        self.max_sigma = max_sigma
        self.min_sigma = min_sigma
        self.decay_period = decay_period
        self.action_dim = action_space.shape[0]
        self.low = action_space.low
        self.high = action_space.high
        self.reset()

    def reset(self):
        self.state = np.ones(self.action_dim) *self.mu

    def evolve_state(self):
        x = self.state
        dx = self.theta* (self.mu - x) + self.sigma * np.random.randn(self.action_dim)
        self.state = x + dx
        return self.state

    def get_action(self, action, t=0):
        ou_state = self.evolve_state()
        self.sigma = self.max_sigma - (self.max_sigma - self.min_sigma) * min(1.0, t / self.decay_period)
        return np.clip(action + ou_state, self.low, self.high)


class ReplayBuffer:
    def __init__(self, capacity):
        self.capacity = capacity
        self.buffer = []
        self.position = 0

    def push(self, state, action, reward, next_state, done):
        if len(self.buffer) < self.capacity:
            self.buffer.append(None)
        self.buffer[self.position] = (state, action, reward, next_state, done)
        self.position = (self.position + 1) % self.capacity

    def sample(self, batch_size):
        batch = random.sample(self.buffer, batch_size)
        state, action, reward, next_state, done = map(np.stack, zip(*batch))
        return state, action, reward, next_state, done

    def __len__(self):
        return len(self.buffer)


class NormalizedActions(gym.ActionWrapper):

    def action(self, action):
        low_bound = self.action_space.low
        upper_bound = self.action_space.high

        action = low_bound + (action + 1.0) * 0.5 * (upper_bound - low_bound)
        #将经过tanh输出的值重新映射回环境的真实值内
        action = np.clip(action, low_bound, upper_bound)

        return action

    def reverse_action(self, action):
        low_bound = self.action_space.low
        upper_bound = self.action_space.high

        #因为激活函数使用的是tanh,这里将环境输出的动作正则化到(-1,1)

        action = 2 * (action - low_bound) / (upper_bound - low_bound) - 1
        action = np.clip(action, low_bound, upper_bound)

        return action


class DDPG(object):
    def __init__(self, action_dim, state_dim, hidden_dim):
        super(DDPG,self).__init__()
        self.action_dim, self.state_dim, self.hidden_dim = action_dim, state_dim, hidden_dim
        self.batch_size = 28
        self.gamma = 0.99
        self.min_value = -np.inf
        self.max_value = np.inf
        self.soft_tau = 2e-2
        self.replay_buffer_size = 8000
        self.value_lr = 5e-3
        self.policy_lr = 5e-4

        self.value_net = ValueNetwork(state_dim, action_dim, hidden_dim).to(device)
        self.policy_net = PolicyNetwork(state_dim, action_dim, hidden_dim).to(device)

        self.target_value_net = ValueNetwork(state_dim, action_dim, hidden_dim).to(device)
        self.target_policy_net = PolicyNetwork(state_dim, action_dim, hidden_dim).to(device)

        for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()):
            target_param.data.copy_(param.data)

        for target_param, param in zip(self.target_policy_net.parameters(), self.policy_net.parameters()):
            target_param.data.copy_(param.data)

        self.value_optimizer = optim.Adam(self.value_net.parameters(), lr=self.value_lr)
        self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=self.policy_lr)

        self.value_criterion = nn.MSELoss()

        self.replay_buffer = ReplayBuffer(self.replay_buffer_size)

    def ddpg_update(self):
        state, action, reward, next_state, done = self.replay_buffer.sample(self.batch_size)

        state = torch.FloatTensor(state).to(device)
        next_state = torch.FloatTensor(next_state).to(device)
        action = torch.FloatTensor(action).to(device)
        reward = torch.FloatTensor(reward).unsqueeze(1).to(device)
        done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(device)

        policy_loss = self.value_net(state, self.policy_net(state))
        policy_loss = -policy_loss.mean()

        next_action = self.target_policy_net(next_state)
        target_value = self.target_value_net(next_state, next_action.detach())
        expected_value = reward + (1.0 - done) * self.gamma * target_value
        expected_value = torch.clamp(expected_value, self.min_value, self.max_value)

        value = self.value_net(state, action)
        value_loss = self.value_criterion(value, expected_value.detach())

        self.policy_optimizer.zero_grad()
        policy_loss.backward()
        self.policy_optimizer.step()

        self.value_optimizer.zero_grad()
        value_loss.backward()
        self.value_optimizer.step()

        for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()):
            target_param.data.copy_(
                target_param.data * (1.0 - self.soft_tau) + param.data * self.soft_tau
            )

        for target_param, param in zip(self.target_policy_net.parameters(), self.policy_net.parameters()):
            target_param.data.copy_(
                target_param.data * (1.0 - self.soft_tau) + param.data * self.soft_tau
            )


env = gym.make("fei-v0")#自定义的环境,与自带的racetrack环境相同,目前在学习如何自定义自己的环境
env.configure(
{
    "observation": {
        "type": "OccupancyGrid",
        "features": ['presence','on_road', "vx", "vy"],
        # "features_range": {
        	# "x": [-100, 100],
        	# "y": [-100, 100],
        	# "vx": [-20, 20],
        	# "vy": [-20, 20]},
        "grid_size": [[-6, 6], [-9, 9]],
        "grid_step": [3, 3],#每个网格的大小
        "as_image": False,
        "align_to_vehicle_axes": True
    },
    "action": {
        "type": "ContinuousAction",
        "longitudinal": True,
        "lateral": True
    },
    "simulation_frequency": 15,
    "policy_frequency": 5,
    "duration": 500,
    "collision_reward": -10,
    "lane_centering_cost": 6,
    "action_reward": -0.3,
    "controlled_vehicles": 1,
    "other_vehicles": 5,
    "screen_width": 600,
    "screen_height": 600,
    "centering_position": [0.5, 0.5],
    "scaling": 7,
    "show_trajectories": False,
    "render_agent": True,
    "offscreen_rendering": False
})


env.reset()
env = NormalizedActions(env)

ou_noise = OUNoise(env.action_space)

state_dim = env.observation_space.shape[2]*env.observation_space.shape[1]*env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
print("状态维度"+str(state_dim))
print("动作维度"+str(action_dim))
# print(env.action_space)
hidden_dim = 256

ddpg = DDPG(action_dim, state_dim, hidden_dim)

max_steps = 250
rewards = []
batch_size = 32
VAR = 1  # control exploration

for step in range(max_steps):
    print("================第{}回合======================================".format(step+1))
    state = env.reset()
    state = torch.flatten(torch.tensor(state))
    ou_noise.reset()
    episode_reward = 0
    done = False
    st=0

    while not done:
        action = ddpg.policy_net.get_action(state)
        # print(action)
        action[0] = np.clip(np.random.normal(action[0],VAR),-1,1) # 在动作选择上添加随机噪声
        action[1] = np.clip(np.random.normal(action[1],VAR),-1,1) # 在动作选择上添加随机噪声
        # action = ou_noise.get_action(action, st)
        next_state, reward, done, _ = env.step(action)#奖励函数的更改需要自行打开安装的库在本地的位置进行修改
        next_state = torch.flatten(torch.tensor(next_state))
        if reward == 0.0:#车辆出界,回合结束
            reward = -10
            done = True
        ddpg.replay_buffer.push(state, action, reward, next_state, done)

        if len(ddpg.replay_buffer) > batch_size:
            VAR *= .9995    # decay the action randomness
            ddpg.ddpg_update()

        state = next_state
        episode_reward += reward
        env.render()
        st=st+1

    rewards.append(episode_reward)
    print("回合奖励为:{}".format(episode_reward))
env.close()

plt.plot(rewards)
plt.savefig('C:/Users/Administrator/Desktop/episode_reward.jpg')

后记

肯定会有我没意识到的错误,欢迎大家批评指正,大家共同进步!

  • 17
    点赞
  • 111
    收藏
    觉得还不错? 一键收藏
  • 68
    评论
highway-env是一种基于OpenAI Gym的Python环境,用于开发和测试自动驾驶系统的强化学习算法。其官方文档为开发者提供了必要的指南和说明,以帮助他们更好地了解和使用highway-env。 官方文档包含了对highway-env的介绍,包括其设计目标和使用场景。它解释了highway-env的核心概念,例如车道、车辆、动作和观察空间。文档还提供了一些基本概念和概述,以帮助开发者快速入门。 文档详细说明了如何安装和配置highway-env环境。它提供了安装所需的依赖项列表,并指导用户如何在Python环境中安装和设置highway-env。这有助于确保开发者能够正确地配置环境并准备好开始使用。 官方文档还介绍了highway-env中可用的不同类型的车辆和代理。它解释了如何使用不同的代理算法,例如DQN、PPO等,来构建和训练智能代理去驾驶车辆。此外,文档还介绍了各种可用的观察空间和动作空间,并给出了如何自定义它们的指导。 此外,文档还提供了一些示例代码和演示,用于展示如何使用highway-env。这些示例代码可以帮助开发者更好地理解和使用highway-env,以便在他们自己的项目中应用。 总之,highway-env官方文档为开发者提供了全面的指南和说明,帮助他们理解和使用highway-env实现更好的自动驾驶系统。通过文档中提供的示例代码和演示,开发者可以更好地应用highway-env并根据自己的需求来进行定制。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 68
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值